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RESUMO 

O objetivo deste projeto consiste na análise estrutural de estruturas tubulares do tipo 

pipe-in-pipe e do tipo riser através do método dos elementos finitos, utilizando os 

softwares PATRAN para a geração da geometria e o software MARC para a análise 

estrutural não-linear envolvendo contato entre superfícies. Os dutos pipe-in-pipe são 

compostos por dois dutos concêntricos de aço e por uma camada anular de 

polipropileno, o que confere, simultaneamente, resistência estrutural e térmica ao 

duto. Já um duto flexível é composto por cinco camadas estruturais: uma carcaça 

intertravada, duas armaduras de aço formada por tendões helicoidais e duas camadas 

de plástico. Essa configuração faz com que o duto flexível seja muito deformável 

quando submetido à flexão, mas forte e rígido em resposta às pressões interna e 

externa, tração e torção.   

O produto desenvolvido é um tutorial específico para a modelagem dos dutos no 

Patran e para sua análise através do Marc. Neste contexto foram estudadas 

configurações distintas de carregamento para cada duto. As não-linearidades 

decorrentes do contato e atrito entre as diversas camadas concêntricas também foram 

consideradas nas análises por elementos finitos. Os resultados obtidos foram 

confrontados com soluções analíticas, a fim de se validar os modelos simulados em 

elementos finitos. 



 

 

ABSTRACT 

The objective of this project is the structural analysis of pipe-in-pipe and flexible 

pipes pipelines through the finite element method using the softwares PATRAN to 

generate the geometry and the software MARC for the nonlinear structural analysis 

involving contact between adjacent layers. The pipe-in-pipe pipelines consist 

basically of two concentric steel tubes and an annular polypropilene layer, what 

provides, simultaneously, structural and thermal resistance. The flexible pipe 

presents five structural layers: an interlocked steel carcass, two tensile helical armor 

layers and two plastic sheaths. This configuration makes the flexible pipe highly 

deformable in bending, but strong and stiff in response to both internal and external 

pressure, tension and torque. 

The developed product is a specific tutorial for the pipelines’ modeling in Patran and 

theirs analysis through Marc. In this context different load configurations were 

studied for each kind of pipeline. The nonlinearities caused by contact and friction 

between the several layers were also considered in the finite elements analyses. The 

obtained results were then compared with analytical solutions to validate the 

simulated models. 
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1 INTRODUÇÃO 

A utilização de dutos submarinos para transportar petróleo e gás natural é um dos 

meios mais seguros, econômicos e, conseqüentemente, mais empregados para tal 

fim. No Brasil 70% da produção de petróleo da Petrobras é proveniente de poços 

submarinos (Ramos Jr. et al, 2008). Por essa razão a integridade estrutural dos dutos 

usados para o transporte destes fluidos do poço até a unidade flutuante, ou até o 

continente, é alvo de extensas pesquisas. 

 

Figura 1: Ilustração de riser (Estefen) 

Neste contexto os dutos pipe-in-pipe, ou dutos sanduíche, são bastante usuais. Estes 

dutos são compostos por dois dutos concêntricos de aço e por uma camada anular de 

polipropileno. 

 

Figura 2: Esquema de pipe-in-pipe 
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Os dutos de aço possuem função estrutural, pois, devido às altas profundidades, os 

dutos submarinos estão sujeitos a enormes pressões externas. Os hidrocarbonetos 

também são extraídos do solo a altas pressões. Daí a necessidade do duto externo 

para resistir à pressão externa e do duto interno para resistir à pressão interna. 

A camada anular confere ao pipe-in-pipe um maior isolamento térmico. A troca de 

calor entre o fluído escoando dentro do duto e o meio deve ser evitada, pois quando a 

temperatura do hidrocarboneto cai abaixo de um valor mínimo, ocorre formação de 

parafina, que leva à diminuição da vazão do escoamento e, desta forma, a uma queda 

de produção. 

Um fato preocupante em dutos sanduíche é a propagação da flambagem. Quando o 

duto está danificado, seja por alguma falha de fabricação ou choque mecânico com 

alguma pedra ou âncora, ocorre uma diminuição da pressão necessária para o colapso 

local. Esta pressão é chamada de pressão de iniciação e depende da magnitude do 

dano, da geometria do duto e das propriedades do material. Caso a magnitude da 

pressão externa seja superior a um valor crítico (pressão de propagação), a 

flambagem pode se propagar por longas distâncias a altas velocidades, desta forma 

causando a falha de todo o duto. 

Outro objeto de estudo relacionado a dutos pipe-in-pipe é a sua integridade estrutural 

no decorrer do tempo. O envelhecimento dos dutos em operação pode torná-los 

suscetíveis à ação de diversos mecanismos de corrosão, o que pode acarretar uma 

diminuição da integridade estrutural e, eventualmente, falhas. 

Os objetivos deste trabalho, em relação aos dutos sanduíche, são: a modelagem e a 

simulação de um duto pipe-in-pipe sujeito a pressões interna e externa, flexão e 

tração através do método dos elementos finitos, ignorando efeitos térmicos. Esta 

modelagem é extremamente importante para compreender o funcionamento e o 

mecanismo de falha do duto. 

Outra parte do trabalho será dedicada à modelagem de tubos flexíveis, ou risers. Os 

risers são vitais para os sistemas de produção submarinos, pois são responsáveis pelo 

transporte de petróleo e gás natural dos poços até a plataforma flutuante e, dessa 

forma, estão sujeitos a carregamentos estáticos e dinâmicos aplicados pelo ambiente 

oceânico e pela plataforma. Estas estruturas não possuem redundância estrutural, 
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portanto uma falha causaria um enorme impacto ambiental, além da interrupção da 

produção e prejuízo financeiro. 

Um duto flexível (Figura 3) é composto por cinco camadas estruturais: carcaça 

intertravada, camada de plástico, armadura de aço interna formada por tendões 

helicoidais, armadura de aço externa formada por tendões helicoidais e camada 

externa de plástico. 

 

Figura 3: Imagem de um corte  de um tubo flexível (Custódio & Vaz, 2002) 

A carcaça intertravada (Figura 4) confere resistência a carregamentos de pressão e as 

armaduras helicoidais conferem resistência à tração e torção, enquanto os polímeros 

concêntricos fornecem vedação e isolamento térmico (Saevik & Bruaseth, 2005). 

Essa configuração faz com que o riser seja muito deformável quando submetido à 

flexão, mas forte e rígido em resposta à pressão interna e externa, tração e torção. 

 

Figura 4: Perfil de uma carcaça intertravada (Ramos Jr et al, 2008) 

Cada camada tem um papel específico na estrutura do duto flexível, entretanto 

informações sobre as interações entre elas e entre elementos de uma mesma camada 

são fundamentais para se determinar o comportamento do duto. O maior exemplo 
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dessa interação entre diferentes elementos é o reforço helicoidal, onde diferentes 

tendões da armadura entram em contato e, por causa do atrito, ocorre uma não 

linearidade com acoplamento entre deformações axiais e torcionais (Witz & Tan, 

1992). 

O projeto de um duto flexível requer duas etapas (Custódio & Vaz, 2002): uma 

análise global e uma análise da seção transversal. A primeira serve para determinar 

carregamentos operacionais e a configuração do duto, enquanto a análise da seção 

transversal avalia a resistência e a rigidez longitudinal, a rigidez à torção e as 

pressões de contato entre as camadas. Geralmente modelos analíticos são utilizados 

em etapas preliminares do projeto e modelos em elementos finitos são empregados 

quando respostas específicas de algumas camadas são necessárias. 

Os efeitos de atrito entre as camadas do duto causam um comportamento altamente 

não linear, o que tem motivado muitas pesquisas no desenvolvimento de modelos de 

elementos finitos para risers. Entretanto, as soluções numéricas, devido, aos 

algoritmos de contato, exigem computadores muito potentes e um tempo de 

simulação muito elevado. 

Este trabalho apresenta um modelo de elementos finitos para um duto flexível 

submetido a carregamentos combinados. O objetivo é estimar o comportamento do 

duto considerando o atrito entre os diferentes elementos da estrutura.  

O método dos elementos finitos fornece uma solução aproximada para equações 

diferenciais com condições de contorno definidas. O domínio é dividido em vários 

elementos de tamanho finito, daí o nome elementos finitos. Dentro destes elementos 

são definidas funções aproximadas que podem ser desenvolvidas matematicamente 

(ver capítulo 4) fornecendo um sistema de equações para o domínio discretizado, que 

é solucionado numericamente. O tamanho do sistema depende da quantidade de 

elementos finitos e sua solução  representa a solução da equação diferencial. 

Neste trabalho será empregado o software “Patran” da empresa MSC-Software na 

modelagem do duto em elementos finitos. O usuário só necessita modelar a 

geometria, definir a malha, as propriedades do material e condições de contorno. O 

software é capaz de modelar diversos tipos de problema, como, por exemplo, térmico 

e estrutural. Após a modelagem o sistema está apto para ser resolvido em um 
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“solver”. Neste trabalho há necessidade de um “solver” não-linear devido ao contato 

entre os dutos. Será utilizado então o software da mesma empresa chamado “Marc”. 

O resultado deste trabalho será a elaboração de um tutorial para a modelagem dos 

diferentes dutos através do “Patran”, tornando os modelos aptos para a resolução 

através do “Marc”. Para esse fim a construção dos modelos é descrita passo a passo e 

as ferramentas fundamentais são apresentadas. Os resultados obtidos através do 

“Marc” são confrontados com resultados de soluções analíticas do problema 

estrutural. 
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2 REVISÃO BIBLIOGRÁFICA 

Não é surpreendente que as regiões do globo onde há mais pesquisas sobre dutos 

submarinos são aquelas onde ocorre uma exploração offshore mais intensa. Diversos 

estudos são conduzidos sobre dutos pipe-in-pipe, especialmente na área de análise da 

estabilidade, sendo que um tópico bastante explorado é a propagação de flambagem. 

Nesse contexto a criação de um modelo para simulações, que é o objetivo deste 

trabalho, se torna uma etapa preliminar. 

Uma formulação teórica para a simulação numérica da propagação da flambagem em 

dutos de águas profundas é proposta em (Pasqualino & Estefen, 2001). O método 

baseia-se na teoria de casca fina e incorpora grandes rotações e comportamento 

elastoplástico. As equações são resolvidas numericamente através de um 

computador, utilizando o método das diferenças finitas, e os resultados são 

comparados com dados experimentais. 

Experimentos e simulações numéricas são empregados em  (Kyriakides & Netto, 

2004) para estudar a dinâmica e a interrupção da propagação da flambagem em dutos 

pipe-in-pipe. Na primeira etapa de experimentos a velocidade de propagação da 

flambagem foi medida em função da pressão. Na segunda etapa foi conduzida uma 

simulação numérica. Os valores obtidos para a velocidade seguem a mesma 

tendência nos dois casos. O modelo de elementos finitos utilizado foi gerado através 

do software não-linear “ABAQUS”. Os dutos foram discretizados utilizando-se 

elementos sólidos tridimensionais e conduziu-se estudos de convergência para 

determinar a distribuição da malha. Devido às condições de simetria, apenas um 

quarto da geometria do duto foi modelado. Foram adotadas duas condições de 

aderência: aderência completa ou nenhuma aderência. 

O trabalho  (Ribeiro, Pinheiro, & Pasqualino, 2007) estuda a redução da pressão de 

colapso de um duto danificado sob ação de pressão externa. Um modelo numérico 

não-linear tridimensional é utilizado para simular o dano mecânico e a aplicação da 

pressão externa. Feito isso é realizado um estudo paramétrico para determinar a 

pressão de colapso para diferentes condições e dimensões de dutos. O modelo de 

elementos finitos é o mesmo empregado em  (Kyriakides & Netto, 2004). 

Em  (Sakakibara, Kyriakides, & Corona, 2008) estuda-se o efeito da corrosão no 

colapso de dutos submarinos sob pressão externa. Os resultados foram obtidos 
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numericamente utilizando um software (BEPTICO) e também através do método dos 

elementos finitos. O modelo de elementos finitos foi gerado através do “ABAQUS”. 

A malha é composta por elementos sólidos tridimensionais e sua distribuição foi 

determinada através de estudos de convergência. 

No trabalho apresentado por (Lourenço et al, 2008) é conduzido um extenso estudo 

paramétrico da propagação da flambagem em dutos sanduíche com um modelo não-

linear tridimensional de elementos finitos. O objetivo é investigar a influência do 

material anular sobre a pressão de propagação da flambagem. O modelo de 

elementos finitos utilizado é o mesmo empregado em  (Kyriakides & Netto, 2004). 

Na pesquisa de (Teixeira et al, 2008) estuda-se a confiabilidade de dutos com 

defeitos corrosivos sujeitos a pressão interna. Diversas análises de pequenos 

experimentos e de modelos tridimensionais não-lineares de elementos finitos foram 

realizadas. Uma análise de sensibilidade foi conduzida para diferentes magnitudes de 

corrosão para identificar a influência de diversos parâmetros. 

No caso dos dutos flexíveis a abordagem é um pouco diferente. A estrutura destes 

tubos, devido à presença das armaduras helicoidais, é mais complexa e sua 

modelagem é alvo de extensas pesquisas. Os estudos sobre tubos flexíveis seguem 

três linhas: modelos analíticos, modelos numéricos e testes experimentais. 

No trabalho de (Witz & Tan, 1992) um modelo analítico para uma estrutura flexível 

foi criado baseado na interação entre as diferentes camadas do duto. Esse modelo 

fornece relações entre carregamentos axiais e torcionais e deslocamentos. Também 

traz outras informações úteis, como previsão de separação  de camadas, amplitude do 

gap e mudanças nas espessuras das camadas.  

Em (Seyed & Patel, 1992) são apresentados cálculos da pressão e das forças 

induzidas pelo escoamento interno em dutos flexíveis. Esse estudo aponta que o 

escoamento interno contribui com um novo termo na expressão da tensão efetiva e 

demonstra que equações de equilíbrio de  um riser flexível são um meio rápido e 

seguro para determinar o perfil estático de dutos flexíveis. 

(McNamara & Harte, 1992) elaboram um modelo analítico 3D para um duto flexível 

sem desprendimento entre camadas e submetido a pressões interna e externa, tração, 

torção e flexão. Esse modelo fornece informações sobre deformação, tensão e 
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pressão nas diferentes camadas e serve também como base para estimar ruptura, 

colapso da carcaça e falha dos tendões da armadura helicoidal. 

No trabalho (Patel & Seyed, 1995) é feita uma revisão histórica do desenvolvimento 

de técnicas de análises hidrodinâmicas para risers flexíveis. Esse estudo ressalta fatos 

marcantes, como a inclusão dos efeitos das pressões interna e externa e do 

escoamento interno. Comenta também sobre áreas ignoradas até então como, por 

exemplo, amortecimento estrutural, carregamento de arrasto hidrodinâmico e 

interações com o fundo do mar. 

(McIver, 1995) gerou um modelo detalhado para o comportamento das seções de um 

duto flexível considerando tanto aderência completa entre as camadas quanto 

desprendimento. Foram considerados carregamentos de tração, torção, cisalhamento, 

flexão, pressão nas paredes do duto e diferenças de temperatura, sendo que o efeito 

do atrito também foi incluído. O modelo permite que as camadas do duto se separem 

e que tendões da armadura helicoidal façam contato. Através do modelo são obtidas 

informações detalhadas sobre as tensões e tensões de contato, além do 

escorregamento entre as camadas e entre os tendões da armadura. 

Outro modelo é proposto por (Custódio & Vaz, 2002), onde são feitas formulações e 

soluções para a resposta de cabos umbilicais e dutos flexíveis submetidos a tração, 

torção e pressões interna e externa, ou seja, apenas carregamentos axissimétricos. O 

modelo leva em consideração não linearidades do material, formação de gap, contato 

entre tendões e variação na curvatura dos tendões. As equações algébricas não 

lineares são resolvidas através de um algoritmo iterativo e servem para estimar 

tensões e deslocamentos em cada camada e a resposta global da estrutura. 

(Ramos Jr. & Pesce, 2004) apresentam uma solução analítica para dutos flexíveis 

submetidos a carregamentos combinados: flexão, torção, tração e pressões interna e 

externa. A principal hipótese simplificadora desse modelo é a consideração de 

escorregamento total entre os tendões das armaduras helicoidais após a flexão, no 

entanto o modelo se mostra consistente quando comparado a resultados 

experimentais. 

Uma formulação em elementos finitos para prever o comportamento de um cabo 

umbilical sujeito a tração, torção, pressões interna e externa e contato com corpos 

externos é apresentada por (Saevik & Bruaseth, 2005). Esse modelo considera não 
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linearidade do material, formação de gap, contato entre as camadas e mudança na 

curvatura dos tendões da armadura. O modelo estima tensões e deslocamentos de 

elementos individuais da estrutura e mostra boa correlação com testes experimentais. 

Procedimentos experimentais foram conduzidos por (Ramos Jr. et al, 2008), onde 

uma descrição detalhada da estrutura interna do riser é feita. Os resultados 

experimentais foram comparados com modelos analíticos e a rigidez obtida 

experimentalmente concorda com os valores numéricos. Neste trabalho também é 

demonstrado que a hipótese de uniformidade na deformação axial nos tendões de 

uma armadura helicoidal não ocorre na prática. 

Uma formulação analítica e um modelo de elementos finitos com várias camadas 

considerando desprendimento foram propostos por (Bahtui, Bahai, & Alfano, 2009). 

Neste estudo todas as camadas do riser foram modeladas separadamente e interações 

do contato foram consideradas. Os resultados obtidos pelo modelo de elementos 

finitos são relações de força e deslocamentos, que pareceram concordar com os 

resultados analíticos. Este trabalho mostra que um modelo de elementos finitos pode 

ser utilizado para conduzir estudos paramétricos em um riser e prever seu 

comportamento submetido a várias condições de carregamento. 
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3 MODELAGEM 

Este capítulo dedica-se à modelagem dos dutos sanduíches (pipe-in-pipe) e dos dutos 

flexíveis (riser) e está dividido em duas partes, sendo uma para cada tipo de duto. Os 

objetivos são: apresentar as ferramentas básicas do “Patran” e elaborar um tutorial 

passo a passo para a construção desses modelos. 

3.1 Duto sanduíche (pipe-in-pipe) 

Depois de um clique duplo no ícone do Patran o programa inicia. Para gerar um 

arquivo novo clique em >File< no cabeçalho localizado na parte de cima da tela e 

então clique em >New< no menu que se abre. Um nome deve ser escolhido para o 

arquivo e após um clique em >OK< o arquivo é salvo no formato *.db. Um menu 

(Figura 5) com as preferências do usuário surge então no canto direito.  

 

Figura 5: Menu de entrada 

No campo >Tolerance< selecione >Default<. Devido ao contato entre os diferentes 

dutos o modelo gerado será não-linear, portanto o software “Msc.Marc” deverá ser 

utilizado. Certifique-se então que no campo >Analysis Code< este software está 

selecionado. O “Patran” é capaz de realizar diversas análises, como térmica e 

estrutural. Neste trabalho será feita uma análise de tensões, logo deve-se selecionar 
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>Structural< no campo >Analysis Type<. Concluída a configuração deste menu 

clique em >OK<. 

A área de trabalho (Figura 6) do “Patran” contém as ferramentas mais úteis que são 

utilizadas para modelar, visualizar e executar simulações. 
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Figura 6: Área de trabalho do Patran 
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1. Geometry: Construção da geometria 

2. Elements: Geração da malha 

3. Loads/BCs: Condições de contorno (pressões, contato e deslocamentos) 

4. Materials: Propriedades dos materiais, como módulo de elasticidade e coeficiente 

de Poisson 

5. Properties: Atribuição de propriedades à malha (definição do material) 

6. Load Cases: Seleção e combinação das condições de contorno definidas 

anteriormente 

7. Analysis: Configuração do contato e execução do cálculo 

8. Results: Visualização dos resultados 

9. Ferramentas de visualização como zoom e enquadramento 

10. Ferramentas de exibição como wireframe e renderização 

11. Seleção da orientação dos eixos 

 

O “Patran” possui uma metodologia muito prática para a geração do modelo. A 

modelagem está dividida em etapas e, para se executar um trabalho mais organizado, 

percorre-se os itens do menu da esquerda para a direita (item 1 ao item 8). Portanto o 

usuário começa definindo a geometria, depois passa para a geração da malha e assim 

por diante até obter os resultados. 

Existem diversas maneiras de modelar um duto pipe-in-pipe no “Patran”. A forma 

mais simples é a modelagem com elementos axissimétricos (Figura 7) que, devido à 

sua simetria, possui uma malha de elementos finitos menor. Portanto menos nós são 

gerados e, dessa forma, exige-se menos tempo de processamento computacional para 

a obtenção dos resultados. 

 

Figura 7: Modelo com elementos axissimétricos 
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No entanto na outra parte deste capítulo, que tem como objetivo a modelagem de 

estruturas mais complexas como tubos flexíveis e/ou cabos umbilicais (Figura 8), a 

modelagem do duto com elementos sólidos 3D torna-se necessária, em virtude da 

existência de camadas helicoidais. Neste trabalho serão realizados os dois tipos de 

modelagem para um duto pipe-in-pipe, axissimétrica e tridimensional com elementos 

sólidos,  para fins didáticos e de comparação de resultados. 

 

Figura 8: Seção transversal de um cabo umbilical (Saevik & Bruaseth, 2005) 

O modelo e os parâmetros geométricos do pipe-in-pipe a ser analisado estão 

indicados na Figura 9: 

 

Figura 9: Desenho do pipe-in-pipe 

Foram adotadas as seguintes dimensões, retiradas de (Ribeiro, Pinheiro, & 

Pasqualino, 2007), para o pipe-in-pipe: 

D03= 120 mm (Diâmetro externo da camada externa) 

D02= Di3= 116 mm (Diâmetro externo da camada anular e interno da camada externa) 

D01= Di2= 100 mm (Diâmetro externo da camada interna e interno da camada anular) 
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Di1= 96 mm (Diâmetro interno da camada interna) 

L = 500 mm (comprimento) 

 

Deve-se trabalhar com um sistema coerente de unidades, pois no “Patran” os 

resultados dos cálculos baseiam-se nas unidades dos dados fornecidos pelo usuário. 

Se fornecermos dimensões em milímetro e forças em newton obteremos as tensões 

em megapascal. 

3.1.1  Modelo axissimétrico 

O modelo axissimétrico é um elemento bidimensional (Figura 7) que torna possível a 

simulação da tração bem como de pressões interna e externa, que são carregamentos 

axissimétricos, em um duto pipe-in-pipe. As dimensões utilizadas para o modelo 

axissimétrico baseiam-se na Figura 9. 

3.1.1.1 Definição da geometria 

Clique em >Geometry< no menu principal (Campo 1 da Figura 6). Novamente 

surgirá um menu no canto direito da tela. Para gerar o modelo deve-se primeiro criar 

as superfícies. Selecione então >Create< no campo >Action< e >Surface< no campo 

>Object<. Existem diversas maneiras de se gerar uma superfície no “Patran”, a mais 

indicada para este caso é a geração através de planos retangulares. No campo 

>Method< escolha então >XYZ<. Feito isso o menu no canto direito é alterado e 

surgem novos campos (Figura 10). 
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Figura 10: Menu para gerar superfícies 

O campo >Surface ID List< dá uma identidade numérica para a superfície. O campo 

>Refer. Coordinate Frame< se refere às coordenadas de referência, que neste caso 

será a origem >Coord 0<. É possível definir um outro sistema de coordenadas, porém 

isso não é necessário para esta modelagem. Em >Origin Coordinates List< se define 

a origem da superfície, ou seja, onde ela deve começar no sistema de coordenadas de 

referência definido anteriormente. Em >Vector Coordinates List< se configura o 

vetor da diagonal do plano retangular em relação à origem da superfície, isto nada 

mais é que a diferença entre o vetor de posição do ponto oposto à origem da 

superfície e o vetor de posição da própria origem da superfície. Após ter definido 

todos esses campos se confirma clicando em >Apply<. 

Seguindo as dimensões da Figura 9 obtém-se os seguintes dados que devem ser 

inseridos nos campos descritos acima para gerar o modelo de elemento axissimétrico: 

Tabela 1: Tabela de superfícies 

Surface ID List 

Origin Coordinates List Vector Coordinates List 

X Y Z X Y Z 

1 0 48 0 500 2 0 

2 0 50 0 500 8 0 

3 0 58 0 500 2 0 

Após a geração das superfícies a geometria obtida deve ser, escolhendo a Iso 1 View 

no campo 11 da Figura 6, a seguinte: 
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Figura 11: Geometria do elemento axissimétrico 

Deve-se observar que na modelagem de um elemento axissimétrico no “Patran” o 

eixo de simetria deve ser obrigatoriamente o eixo x.  

Cada superfície possui condições de contorno e regiões de contato distintas. Para 

contornar este problema utiliza-se o agrupamento de superfícies em grupos. Cada 

grupo pode ser trabalhado individualmente e possibilita, desta forma, uma 

modelagem mais organizada e simples. Para criar um grupo clique em >Group< no 

cabeçalho e depois em >Create<. No menu lateral defina um nome para o grupo a ser 

gerado no campo >New Group Name<. Neste trabalho serão utilizados: “Tex” para o 

tubo externo, “Tan” para o tubo anular e “Tin” para o tubo interno. No campo 

>Entity Selection< selecione, clicando com o mouse sobre a figura, a geometria que 

deverá fazer parte do grupo. Conforme definido anteriormente as geometrias para 

cada grupo devem ser: 

Tabela 2: Tabela de grupos 

Group 
Surface ID 
List 

Tex 3 

Tan 2 

Tin 1 

Confirme a criação do grupo clicando em >Apply<. Para trabalhar com um grupo 

isoladamente se deve clicar em >Group< no cabeçalho e depois em >Post<. No menu 

lateral (Figura 12) escolha o grupo com o qual se quer trabalhar e clique em 

>Apply<. 
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Figura 12: Menu de seleção de grupos 

3.1.1.2 Geração da malha 

A malha para cada grupo será gerada a partir da geometria (superfície). Uma malha 

consiste em diversos elementos 2D (no caso de um elemento axissimétrico) que 

juntos cobrem a superfície inteira. Neste trabalho será adotado um elemento 

retangular para criar a malha porque este se adapta melhor à geometria do duto 

axissimétrico. 

Para não obter uma malha muito discretizada, o que acarretaria em um maior tempo 

de processamento pelo computador, utiliza-se uma razão de 5:1, que é a máxima 

aceita pelo “Patran”, para o comprimento e a largura do elemento, a partir deste valor 

a incidência de erros numéricos na simulação, como falha na convergência, pode 

aumentar. Dessa forma obtêm-se elementos maiores e o número total de elementos 

que compõem a malha diminui. 

Para facilitar a visualização vamos gerar uma malha para cada grupo exibindo apenas 

o grupo correspondente. Assim devemos exibir o grupo isoladamente conforme 

descrito anteriormente. Comece pelo grupo da sua escolha. Depois que o grupo 

estiver sozinho na área de trabalho clique em >Elements<, campo 2 da Figura 6. No 

menu lateral escolha >Create< no campo >Action<, >Mesh Seed< no campo 

>Object< e >Uniform< no campo >Type<. O menu deverá ser o mesmo que o 

exibido na Figura 13: 
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Figura 13: Menu de discretização da malha 

A função >Mesh Seed< serve para discretizar de maneira adequada a superfície. Os 

dutos em questão possuem um comprimento muito maior que a largura. Portanto, 

para que se obtenham resultados realistas, escolheremos o tamanho do elemento em 

função da largura do duto. Assim garante-se que a malha terá um número mínimo de 

elementos na largura. As dimensões das superfícies estão na Tabela 3 

Tabela 3: Tabela de dimensões das superfícies 

Duto Surface ID List Largura (mm) Comprimento (mm) 

externo 3 2 500 

anular 2 8 500 

interno 1 2 500 

A Tabela 3 indica que o duto anular possui uma espessura consideravelmente maior 

que os outros dutos e, portanto, necessita de um número maior de elementos de 

malha. Então, para que haja uma compatibilidade nas malhas dos dutos, será 

adotado, para os dutos interno e externo, um elemento de malha de 5 mm x 1mm 

(comprimento x largura) e para o duto anular um elemento de 5 mm x 2,667, a fim de 

se obter três elementos na largura deste duto. 

Assim iremos discretizar as superfícies dos dutos interno e externo pelo tamanho do 

elemento, então selecione >Element Lenght (L)< no menu lateral. Para o duto anular 

escolha >Number of Elements<. No campo >Curve List< deverá ser selecionada a 
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curva a ser discretizada. Cada superfície deverá ser discretizada duas vezes, uma vez 

para a largura e outra para o comprimento. Logo, obtemos a Tabela 4: 

Tabela 4: Tabela de discretização das superfícies 

Duto Group Surface ID List Curve List 
Element Lenght 
(mm) 

Number of 
Elements 

externo 1 1 Surface 1.2 1 - 

externo 1 1 Surface 1.3 5 - 

anular 2 2 Surface 2.2 - 3 

anular 2 2 Surface 2.3 5 - 

interno 3 3 Surface 3.2 1 - 

interno 3 3 Surface 3.3 5 - 

Após as discretizações para um duto tem-se: 

 

Figura 14: Duto discretizado 

Recomenda-se iniciar a geração da malha de outro duto somente após ter concluído a 

geração da malha do anterior, portanto após a discretização para um grupo selecione, 

no menu lateral, >Mesh< no campo >Object< e >Surface< no campo >Type<. O 

menu lateral será então: 
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Figura 15: Menu de geração de malha 

No campo >Elem Shape< selecione >Quad<, no campo >Mesher< escolha 

>IsoMesh< e no campo >Topology< selecione >Quad4<. No campo >Surface List< 

escolha a superfície cuja malha deve ser gerada. O campo >Global Edge Lenght< 

deverá ser ignorado pois a malha será gerada utilizando a discretização configurada 

anteriormente independente do valor inserido neste campo. Confirme clicando em 

>Apply<. 

 

Figura 16: Malha gerada para um duto 

Após ter gerado a malha de todos os grupos componentes (Figura 17) obtém-se a 

malha para toda geometria, que não será mais utilizada e pode ser deletada. 
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Figura 17: Malha gerada para todos os dutos 

Para verificar se o contato entre os dutos está corretamente configurado selecione 

>Verify< no menu lateral. O menu obtido está ilustrado na Figura 18. 

 

Figura 18: Menu de verificação de contato 

Selecione então >Free Edges< no campo >Display Type< e clique em >Apply<.  
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Figura 19: Contato devidamente configurado 

Nota-se na imagem acima a presença de arestas entre os dutos o que demonstra que 

os contatos estão devidamente definidos. 

3.1.1.3 Condições de Contorno 

Agora que a malha está definida devem ser configuradas as condições de contorno 

(campo 3 da Figura 6). O modelo terá três tipos de condições de contorno: 

deslocamento (displacement), pressão (pressure) e contato (contact). 

Um modelo de elementos finitos exige que ao menos um deslocamento seja 

fornecido para que o sistema de equações possa ser resolvido. Portanto nosso modelo 

será engastado na extremidade próxima à origem. Na extremidade livre, oposta ao 

engastamento, será prescrito um deslocamento de 1 mm, que simula o efeito da 

tração sobre o duto. 

Um duto submarino, devido à coluna de água, está sujeito a uma enorme pressão 

externa. Será, portanto, considerada uma pressão externa da ordem de 10 MPa. O 

hidrocarboneto retirado do solo também possui uma alta pressão, 1 MPa 

aproximadamente, que deverá ser suportada pelo duto interno. 

O contato entre os dutos também é definido nesta etapa da modelagem. A não-

lineridade do contato causa um aumento considerável no tempo de processamento 

necessário para a obtenção dos resultados. Em uma simulação não-linear o software 

“Marc” faz inúmeras simulações lineares, onde, de uma simulação para outra, 

executa pequenos aumentos de carregamento. 

Para criar uma condição de contorno selecione >Create< no menu lateral. 

Começaremos com o engastamento, portanto selecione >Displacement< no campo 

>Object<. O menu lateral exibido será: 
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Figura 20: Menu de geração de condição de contorno 

É necessário dar um nome à condição de contorno no campo >New Set Name<, 

nesse caso chamaremos de “Engastamento”. No botão >Input Data< devem ser 

atribuídas as dimensões do deslocamento que no caso do engastamento será <0,0,0>, 

ou seja, o engastamento evitará o escorregamento dos dutos. Apesar de ser um 

elemento axissimétrico, condição que será imposta posteriormente e que 

impossibilita o deslocamento no eixo perpendicular ao plano de axissimetria, há a 

necessidade de engastar na outra direção (sentido de z), pois o “Patran” não faz essa 

associação automaticamente. Por último deve ser definida a região de aplicação que é 

a face do duto externo próximo à origem. 

Porém, antes de delimitar o retângulo para selecionar a região de aplicação, clique 

em >Preferences< no cabeçalho e selecione >Picking<. Surgirá o menu ilustrado na 

Figura 21: 
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Figura 21: Menu de configuração de seleção 

Escolha a opção >Enclose entire entity< no sub-menu “Rectangle/Polygon Picking” 

para selecionar apenas os elementos totalmente englobados pelo retângulo. A 

utilização do retângulo para selecionar objetos será discutida posteriormente. 

Confirme clicando em >Close<. 

Feito isso volte para o menu lateral anterior, clique no botão >Select Application 

Region< e selecione a vista >Left Side View< no campo 11 da Figura 6  

para termos uma vista perpendicular à superfície de atuação do engastamento. No 

menu lateral marque a opção >FEM< para selecionar somente elementos de malha e 

escolha, segurando o botão esquerdo do mouse e delimitando um retângulo ao redor 

dos elementos selecionados, os nós na face próxima a origem.  

 

Figura 22: Seleção da região de engastamento 

Confirme clicando em >Add<, >OK< e, no próximo menu, em >Apply<. A condição 

de contorno é visível no modelo (conforme Figura 23). 
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Figura 23: Engastamento visível no modelo 

O deslocamento na extremidade oposta à origem se configura da mesma forma. 

Primeiro nomeie a nova condição de contorno no campo >New Set Name<, 

chamaremos de “Deslocamento Prescrito”. Clique então em >Input Data< e no 

campo >Translations< defina o deslocamento desejado. Neste trabalho os dutos 

possuem 500 mm de comprimento, portanto assume-se que um deslocamento 

adequado é da ordem de 1 mm. Logo preencha >1, ,0< neste campo. No botão 

>Select Application Region< certifique-se que a opção >FEM< está selecionada. 

Marque então, conforme descrito anteriormente, os nós desta extremidade. Confirme 

clicando em >Add<, >OK< e em >Apply<. 

 

Figura 24: Deslocamento prescrito na extremidade livre 

Agora que os deslocamentos já estão configurados, configuram-se as pressões 

externa e interna. No menu lateral escolha >Pressure< no campo >Object<. No 

campo >New Set Name< dê um nome para a nova condição de contorno. 

Nomearemos neste trabalho as pressões externa e interna de “Pext” e “Pint” 

respectivamente. No campo >Target Element Type< selecione >2D< já que se trata 

de um elemento axissimétrico. Em >Input Data< insira o valor da pressão (sem 

colocar a unidade) no campo >Edge Pressure<, neste caso a pressão externa será de 

10 MPa e a interna de 1 MPa. Clique então em >OK< para confirmar. No botão 

>Select Application Region< marque a opção >Geometry<, pois selecionaremos uma 

aresta onde a pressão atuará. No campo >Select Surface or Edges< selecione a aresta 

desejada, no caso da pressão externa a aresta do modelo mais acima e para a pressão 

interna a aresta mais abaixo, conforme mostrado na Figura 25. 
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Figura 25: Aresta de atuação da pressão externa 

Confirme clicando em >Add<, >OK< e, no menu seguinte, em >Apply<. Repetindo 

este procedimento para as duas pressões obtêm-se as seguintes condições de 

contorno: 

 

Figura 26: Pressão e deslocamentos definidos 

A última etapa das condições de contorno é a configuração do contato. Cada 

superfície de contato deve ser definida individualmente, ou seja, para o mesmo 

contato devem ser definidas duas superfícies. Como há contato entre o duto externo e 

o duto anular e também entre o duto anular e o duto interno, teremos 4 superfícies de 

contato: 

 Tex: referente à região de contato do duto externo 

 Tan_ex: referente à região do duto anular que entra em contato com o duto 

externo 

 Tan_in: referente à região do duto anular que entra em contato com o duto 

interno 

 Tin: referente à região de contato do duto interno 

Selecione então >Contact< no campo >Object< do menu lateral. Em >New Set 

Name< dê um dos nomes acima referente à região de contato que se deseja definir. O 

campo >Input Data< deverá ser ignorado. No campo >Select Application Region< 

marque novamente a opção >FEM< e selecione, com o retângulo, os elementos 

componentes da região de contato. A figura a seguir ilustra este procedimento: 
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Figura 27: Seleção da área de contato 

Repare na figura acima que nem todos os elementos da região de contato “Tan_ex” 

estão sendo selecionados. Há duas possibilidades de se contornar este problema. 

Pode-se segurar a tecla >Shift< do teclado para, após selecionar um elemento, 

selecionar outro. Também é possível fragmentar a região de contato e adicionar as 

regiões, clicando em >Add<, por partes. O resultado é o mesmo. Confirme a seleção 

clicando em >Add<, >OK< e, no menu posterior, em >Apply<. Após definir todas as 

regiões de contato obtém-se: 

 

Figura 28: Exibição do contato 

3.1.1.4 Definição e atribuição de propriedades 

Após a conclusão das condições de contorno deve-se definir os materiais que 

compõem os dutos. Conforme dito anteriormente os dutos externo e interno são 

feitos de aço e o material anular é polipropileno. As propriedades destes materiais 

foram retiradas da literatura sobre o assunto (Callister Jr., 2002) e encontram-se na 

Tabela 5: 
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Tabela 5: Propriedades dos materiais empregados 

Material Módulo de Elasticidade (MPa) Coeficiente de Poisson 

Aço 200000 0,3 

Polipropileno 1300 0,34 

Para definir os materiais clique em >Materials< (campo 4 da Figura 6) e selecione 

>Create< no menu lateral. 

 

Figura 29: Menu de definição de materiais 

 No campo >Material Name< é pedido um nome para o material, nós chamaremos 

aço de Steel e polipropileno de PP. As propriedades do material serão dadas através 

do botão >Input Properties<, lembre-se que pela convenção adotada neste trabalho o 

módulo de elasticidade deve ser dado em MPa. Ao clicar neste botão surge a tabela 

ilustrada na Figura 30: 
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Figura 30: Definição das propriedades do material 

Preencha os campos >Elastic Modulus< e >Poisson Ratio< com os dados fornecidos 

na Tabela 5. Para confirmar clique em >OK< e depois em >Apply<. Repita este 

procedimento para os dois materiais. 

Definidos os materiais deve-se agora atribuir propriedades às malhas. Selecione 

>Properties< (campo 5 da Figura 6), >Create<, >2D< e >2D Solid< no menu lateral. 

 

Figura 31: Menu de atribuição de propriedades 

É nesta etapa que se define o material de cada duto e também a condição de 

axissimetria. Como os dutos possuem materiais diferentes atribuiremos as 
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propriedades individualmente, portanto deve-se primeiro exibir o grupo 

correspondente a um único duto antes de prosseguir. Depois dê um nome para a 

propriedade que se pretende atribuir, nesse trabalho teremos Tex, Tan e Tin para os 

dutos externo, anular e interno respectivamente. Feito isso selecione 

>Axisymmetric< no sub-menu >Options<. 

Agora falta definir o material da malha. Para isso clique no botão >Input Properties< 

para abrir um formulário de propriedades. 

 

Figura 32: Formulário de propriedades 

Ao lado de >Mat Prop Name< há um ícone, clicando nesse ícone abrirá uma lista 

com os materiais definidos anteriormente. Para Tex e Tin deverá ser escolhido o 

material Steel e para o Tan o material PP. Confirme clicando em >OK<. Por último 

selecione toda a malha visível no campo >Select Application Region<, lembrando 

que a malha deverá corresponder a um duto. Confirme clicando em >Add< e em 

>Apply<. Esse procedimento deve ser feito para os três dutos. 

3.1.1.5 Configuração da Análise 

Na análise (campo 7 da Figura 6) configura-se o tipo de análise que deverá ser 

executada, o software de processamento (“solver”) a ser utilizado, neste caso o 

“Marc”, e as características do contato. Selecione >Analyse<, >Entire Model< e 

>Full Run< no menu lateral. 
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Figura 33: Menu da análise 

Depois defina um nome para a análise no campo >Job Name<, chamaremos esta 

análise de “pipe-in-pipe”. Caso no campo >Code< ou no campo >Type< não esteja 

selecionado >Msc.Marc< e >Structural< respectivamente, clique em >Preferences<, 

>Analysis< e corrija as configurações. 

Para configurar o contato clique no botão >Load Step Creation<, depois em 

>Solution Parameters< e por último em >Contact Table<. Nesta tabela (Figura 34) 

definem-se os corpos que se tocam, representados pela letra T, e os corpos que estão 

grudados, representados pela letra G. Também pode-se definir o coeficiente de atrito 

no campo >Friction Coefficient<. 
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Figura 34: Tabela de contatos 

No modelo feito anteriormente o a superfície de contato do duto externo (Tex) toca a 

superfície de contato superior do duto anular (Tan_ex) e a superfície de contato do 

duto interno (Tin) toca a superfície de contato inferior do duto anular (Tan_in). Logo 

deve-se configurar a tabela de contato segundo a tabela abaixo: 

Tabela 6: Configuração da tabela de contatos 

  1 2 3 4 

1- Tan_in       T 

2- Tan_ex     T   

3- Tex   T     

4- Tin T       

 

O coeficiente de atrito será considerado o mesmo para os dois contatos, pois os pares 

de superfícies envolvidas, polipropileno e aço, se repetem. Neste trabalho será 

adotado um coeficiente de atrito de 0,5, que é um valor estimado. 

Confirme as alterações clicando em >OK< nas janelas >Contact Table< e >Static 

Solution Parameters< e por último clique em >Apply< para iniciar a análise com o 

software >Marc<. 

É possível acompanhar o andamento da simulação selecionando, no menu lateral, 

>Monitor< no campo >Action< e >Job< no campo >Object<. Feito isso selecione o 
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nome do trabalho no campo >Available Jobs<, neste caso >pipe-in-pipe<, e clique 

em >Apply<. Surgirá uma janela contendo informações do processo. 

1.  

Figura 35: Monitoramento da análise 

Depois que a simulação estiver encerrada selecione >Read Results< no campo 

>Action< do menu lateral , no campo >Available Jobs< escolha o trabalho simulado 

e por último clique em >Apply<. Este procedimento faz com que a simulação possa 

ser analisada em >Results< (campo 8 da Figura 6). 

3.1.2 Duto tridimensional 

A modelagem completa do duto difere do modelo axissimétrico principalmente em 

relação à geometria. Os elementos de malha possuem três dimensões, o que 

possibilita uma simulação mais real, porém mais trabalhosa e demorada. Esta 

modelagem é extremamente importante, pois se assemelha bastante com a 

modelagem de dutos flexíveis, o que deverá ser feito futuramente. Neste trabalho, no 

entanto, o duto tridimensional será utilizado na simulação da flexão, que não é um 

carregamento axissimétrico e, portanto, exige uma modelagem mais complexa. O 

modelo está ilustrado na Figura 2 e suas dimensões baseiam-se no desenho do pipe-

in-pipe da Figura 9. 
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3.1.2.1 Definição da geometria 

Os passos a serem seguidos são os mesmos do elemento axissimétrico. Portanto 

clica-se em >Geometry< (campo 1 da Figura 6). Deverão ser geradas as mesmas 

superfícies do elemento axissimétrico. Estas superfícies serão revolucionadas 

posteriormente ao redor do eixo x de simetria para formar uma malha tridimensional. 

Portanto repita o procedimento do capítulo 3.1.1.1 para gerar as superfícies e formar 

os grupos e, desta maneira, obter a seguinte configuração: 

 

Figura 36: Geometria do duto tridimensional 

3.1.2.2 Geração da Malha 

A geração da malha para o duto inteiro é igual à geração para o elemento 

axissimétrico, somente depois que as malhas das superfícies estiverem definidas é 

que se revoluciona a malha ao redor do eixo de simetria para se obter a malha 

tridimensional. Logo repita os passos do capítulo 3.1.1.2 para obter as seguintes 

malhas: 

 

Figura 37: Malhas do duto tridimensional 

Agora trabalharemos com os grupos individualmente para rotacioná-los ao redor do 

eixo de simetria. Primeiro exiba somente o grupo com o qual se deseja trabalhar. 

Então selecione, no menu lateral, >Sweep< no campo >Action<, >Element< no 

campo >Object< e >Arc< no campo >Method<. 
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Figura 38: Menu de revolução 

No botão >Mesh Control< pode-se escolher a dimensão do elemento da malha ou o 

número total de elementos que serão gerados na revolução. Neste trabalho será 

utilizado um elemento a cada 10° de rotação, ou seja, ao todo são 36 elementos ao 

redor da circunferência. No campo >Sweep Angle< insira 360° para que ocorra uma 

revolução completa e no campo >Base Entity List< selecione a malha bidimensional 

que se deseja rotacionar. Antes de clicar em >Apply< certifique-se que a opção 

>Delete Original Elements< está marcada e que no campo >Axis< o eixo >Coord 

0.1< (referente ao eixo x) está selecionado.  

Feito isso deve-se eliminar os nós excedentes selecionando >Equivalence< e 

>Group< no menu lateral. Na lista de grupos que aparece escolha aquele com o qual 

se está trabalhando e clique em >Apply<. Dessa forma os nós que estão ocupando a 

mesma posição na malha são unificados formando um nó apenas. Repetindo este 

procedimento para todos os grupos obtém-se a Figura 39 na vista >Rear View< 

(Campo 11 da Figura 6). 
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Figura 39: Malha tridimensional 

Após gerar a malha é necessário, para simular a flexão, definir uma ligação rígida 

entre os elementos da seção transversal e o centro da circunferência, assim podemos 

aplicar o momento apenas no centro da circunferência. Para criar a ligação entre o 

centro da circunferência deve-se, antes de tudo, gerar um elemento de malha no 

centro da circunferência onde o momento será aplicado. Selecione então >Create< no 

menu lateral e no campo >Object< escolha >Node<. Basta inserir a localização 

desejada no campo >Node Location List<, que nesse caso será [0 0 0], e clicar 

>Apply<. 

Feito isso selecione >MPC< no campo >Object< e >RBE2< no campo >Type< e 

clique no botão >Define Terms<. Surgirá o menu ilustrado na Figura 40: 



43 

 

 

Figura 40: Menu de >MPC< 

Selecione então os nós dependentes, ou seja, os elementos da seção transversal que 

deverão estar conectados rigidamente ao centro da circunferência. Para isso selecione 

o >Left Side View< (campo 11 da Figura 6) e utilize o polígono selecionador para 

selecionar apenas os elementos visíveis (ver item 3.2.3). Depois escolha os graus de 

liberdade que fixam os elementos da seção transversal ao centro na tabela >DOFs< 

(Figura 40). Por último selecione o nó criado na origem e clique em >Apply<. O 

>MPC< criado pode ser visto na Figura 41: 

 

Figura 41: Ligação rígida entre centro e elementos da seção transversal 
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3.1.2.3 Condições de Contorno 

A malha do duto tridimensional terá as mesmas condições de contorno que o 

elemento axissimétrico, a principal diferença ocorre na região de atuação destas 

condições de contorno. 

Começaremos com o vínculo devido a simetria (Figura 72). Primeiro selecione 

>Loads/BCs< (Campo 3 da Figura 6). Depois selecione >Create< e >Displacement< 

no menu lateral conforme visto anteriormente. No campo >Input Data< defina 

>Tanslations< como <0, , > e >Rotations< como >0,0,0<. No campo >Select 

Application Region< deve ser selecionada a região de atuação do vínculo, o que 

exigirá o uso de uma ferramenta que não é utilizada para o elemento axissimétrico. 

No menu de seleção marque o primeiro item conforme ilustrado na Figura 42. Desta 

maneira ao traçarmos o retângulo para selecionar os elementos só estaremos 

selecionando os elementos visíveis na tela. Assim ao escolhermos a >Right Side 

View< (Campo 11 da Figura 6) só estaremos vendo os elementos da área de atuação 

do vínculo, que serão selecionados pelo retângulo. Não se esqueça de selecionar a 

opção >FEM< no menu lateral. 

 

Figura 42: Menu de seleção 

Após selecionar os nós da malha que serão vinculados clique em >Add<, em >OK< e 

confirme em >Apply<. O vínculo fica visível na malha: 
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Figura 43: Vínculo na malha tridimensional 

O deslocamento (Figura 72) na origem se configura da mesma forma. No entanto em 

>Input Data< o campo >Translations< deve ser definido com >0,0,0<. Também há 

uma diferença na região de atuação, esse deslocamento deve ser imposto na região 

oposta ao vínculo de simetria (origem). Logo deve-se selecionar >Left Side View< 

(Campo 11 da Figura 6) e como região de atuação deve-se escolher apenas o nó na 

origem.  

Agora se definem as pressões. As pressões atuam na superfície externa do duto 

externo e na superfície interna do duto interno. Começaremos com a pressão externa. 

Primeiro selecione >Pressure< no campo >Object<. No campo >New Set Name< 

defina o nome >Pext< e no campo >Target Element Type< escolha >3D<. O valor da 

pressão externa é o mesmo usado para o elemento axissimétrico, 10 MPa, que deverá 

ser inserido no botão >Input Data<. A maior dificuldade surge na hora de selecionar 

a região de atuação da pressão, ou seja, a casca do duto externo. 

Primeiro desmarque a opção de só selecionar elementos visíveis. Depois certifique-se 

que a opção >Enclose Entire Entity< no menu >Preferences<, >Picking< está 

marcada. Nós usaremos o polígono para selecionar os elementos de casca. Segure a 

tecla >Ctrl< e trace um polígono ao redor dos elementos de casca, tomando cuidado 

de somente englobar estes elementos no polígono. Recomenda-se fragmentar a 

seleção para evitar erros e repetições desnecessárias, este procedimento está ilustrado 

na Figura 44: 
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Figura 44: Área de atuação da pressão externa 

Após ter selecionado todos os elementos de casca confirme clicando em >OK< e em 

>Apply<.  

Para modelar a pressão interna repita os mesmos passos, só alterando o valor para 1 

MPa, pois as duas pressões são configuradas da mesma forma. A única diferença 

surge na hora de selecionar a área de atuação da pressão interna. Entretanto os 

elementos devem ser englobados pelo polígono selecionador da mesma maneira 

conforme ilustrado na Figura 45: 



47 

 

 

Figura 45: Área de atuação da pressão interna 

As duas pressões podem ser vistas através da vista frontal >Right Side View< 

(Campo 11 da Figura 6). 

 

Figura 46: Pressões interna e externa atuando 

Os contatos são definidos da mesma forma que são definidos para elementos 

axissimétricos, ou seja, cada superfície de contato deve ser definida individualmente. 

Aqui também trabalharemos com um grupo por vez para facilitar na hora de 

selecionar as superfícies e evitar erros.  

Primeiro define-se o grupo com o qual se quer trabalhar. Depois escolha o nome da 

superfície de contato. Novamente teremos 4 superfícies: 

 Tex: referente à região de contato do duto externo 

 Tan_ex: referente à região do duto anular que entra em contato com o duto 

externo 

 Tan_in: referente à região do duto anular que entra em contato com o duto 

interno 
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 Tin: referente à região de contato do duto interno 

O campo >Input Data< deverá ser ignorado. No campo >Select Application Region< 

utilize mais uma vez o polígono para selecionar a superfície de contato e selecione 

por partes para tornar este procedimento mais fácil. A seleção da superfície “Tan_ex” 

está ilustrada abaixo: 

 

Figura 47: Seleção de superfície de contato 

Definidas todas as superfícies de contato: 

 

Figura 48: Superfícies de contato definidas 

Por último aplica-se o momento na origem (Figura 72). Selecione >Force< no menu 

lateral e clique em >Input Data<. No campo >Moment< insira >0, 0, 500000< 

correspondente a um momento de 500000 N.mm no eixo z. Confirme clicando em 

>Apply< e no menu anterior clique no botão >Select Application Region< para 

selecionar o nó na origem, que é onde o momento será aplicado. 

3.1.2.4 Definição e atribuição de propriedades 

A definição dos materiais é a mesma já descrita no capítulo 3.1.4. Portanto siga os 

mesmos passos já mencionados até o momento de atribuir as propriedades às malhas 

em >Properties< (Campo 5 da Figura 6). 

No caso do duto tridimensional também há a necessidade de se trabalhar com os 

grupos separadamente, pois os materiais são diferentes. Primeiro exiba somente o 
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grupo com o qual se deseja trabalhar. Depois selecione, no menu lateral, >Create< no 

campo >Action<, >3D< no campo >Object< e >Solid< no campo >Type<. Também 

teremos três propriedades que devem ser atribuídas (Tex, Tan e Tin), uma para cada 

duto correspondente ao material. No campo >Property Set Name< insira o nome da 

propriedade e no botão >Input Properties< se define o material conforme já 

mencionado. Por último selecione toda a malha visível no campo >Select 

Application Region<, lembrando que a malha deverá corresponder a um duto. 

Confirme clicando em >Add< e em >Apply<. Esse procedimento deve ser feito para 

os três dutos. 

3.1.2.5 Configuração da Análise 

A configuração da análise para o duto tridimensional é idêntica à configuração da 

análise do elemento axissimétrico (Capítulo 3.1.5). A definição da tabela de contato é 

a mesma e os métodos de acompanhamento e leitura dos resultados são iguais. 

3.2 Duto flexível (riser) 

A modelagem do duto flexível é mais complexa e, portanto, exige um conhecimento 

mais profundo das funcionalidades do “Patran”, assim como um tempo maior de 

simulação. O modelo gerado nesse trabalho tem suas propriedades geométricas e 

materiais retiradas de (Ramos Jr et al, 2008): 

 

Figura 49: Propriedades do Riser (Ramos Jr. et al, 2008) 

Para cada camada são usadas as seguintes propriedades: 

D0: diâmetro externo 
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Di: diâmetro interno 

E: módulo de elasticidade 

ν: coeficiente de Poisson 

 

1. Carcaça intertravada 

Devido à complexidade geométrica, a modelagem dessa cama será simplificada 

adotando-se um duto equivalente de aço com as seguintes propriedades: 

Tabela 7: Propriedades carcaça intertravada 

Di (mm) D0 (mm) E (MPa) ν 

64,72 70,00 200000 0,3 

 

2. Camada interna de plástico 

Tabela 8: Propriedades da camada interna de plástico 

Di (mm) D0 (mm) E (MPa) ν 

70,00 82,00 280 0,3 

 

3. Armadura helicoidal interna 

Para a modelagem das armaduras helicoidais são necessárias outras informações 

geométricas, além dos diâmetros, pois os tendões precisam ser definidos 

individualmente. 

Tabela 9: Propriedades da armadura helicoidal interna 

Di (mm) D0 (mm) E (MPa) ν 

82,00 86,00 200000 0,3 

 

Cada camada possui 29 tendões com seção transversal retangular (5mm x 2mm). Os 

tendões têm  um ângulo de assentamento (α) de ±55,5° em relação ao eixo 

longitudinal, ou seja, as camadas possuem tendões com orientações opostas. Serão 

modelados dois passos completos da armadura, o que implica que o duto terá cerca 

de 237 mm. 
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Figura 50: Vista lateral de um tendão 

4. Armadura helicoidal externa 

Os tendões da armadura helicoidal externa apresentam as mesmas características da 

armadura interna. As únicas divergências entre as duas armaduras são os diâmetros. 

Tabela 10: Propriedades da armadura helicoidal externa 

Di (mm) D0 (mm) E (MPa) ν 

86,00 90,00 200000 0,3 

 

5. Camada externa de plástico 

Tabela 11: Propriedades da camada externa de plástico 

Di (mm) D0 (mm) E (MPa) ν 

90,00 100,00 320 0,3 

3.2.1 Definição da geometria 

Cada camada será modelada separadamente, para isso devem ser criados 5 grupos 

seguindo os passos já descritos no capítulo 3.1.1.1. Os grupos utilizados nesse 

trabalho estão listados na Tabela 12 e, inicialmente, não possuem nenhuma superfície 

associada. 
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Tabela 12: Grupos do riser 

Group Surface ID List 

Carcaca - 

Plast_int - 

Arm_int - 

Arm_ext - 

Plast_ext - 

 

Inicia-se a modelagem a partir da carcaça intertravada, portanto exiba o grupo 

“Carcaca” seguindo as instruções do capítulo 3.1.1.1. Mais uma vez a estratégia 

adotada para a geração das geometrias axissimétricas será a revolução ao redor do 

eixo de simetria x. Clique então em >Geometry< no menu principal (Campo 1 da 

Figura 6) para abrir o menu lateral. Selecione >Create< no campo >Action<, 

>Surface< no campo >Object< e em >Method< escolha >XYZ<. Surgirá um menu 

igual ao ilustrado na Figura 10 que deverá ser preenchido da seguinte forma: 

Surface ID List: 1 

Refer. Coordinate Frame: Coord 0 

Vector Coordinates List: <237 2.64 0> 

Origin Coordinates List: [0 32.36 0] 

O mesmo procedimento deve ser utilizado para a geração do perfil de revolução das 

camadas plásticas. Para a camada plástica interna (grupo “Plast_int”) tem-se: 

Surface ID List: 2 

Refer. Coordinate Frame: Coord 0 

Vector Coordinates List: <237 6 0> 

Origin Coordinates List: [0 35 0] 

Para a camada plástica externa (grupo “Plast ext”) tem-se: 

Surface ID List: 3 

Refer. Coordinate Frame: Coord 0 

Vector Coordinates List: <237 5 0> 

Origin Coordinates List: [0 45 0] 
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Figura 51: Perfil das camadas plásticas e da carcaça intertravada 

As armaduras helicoidais serão geradas a partir de linhas helicoidais que definem um 

tendão. Sobre essas linhas helicoidais serão, posteriormente, extrudadas as malhas 

dos tendões formando, assim, um modelo de tendão para cada armadura. A partir dos 

modelos serão gerados 29 tendões ao redor do eixo de simetria para formar cada 

armadura. 

Começaremos com a armadura interna. Primeiro exiba o grupo “Arm_int” e 

selecione, no menu lateral, >Create<, >Curve< e >XYZ<. Nesse passo será criada a 

curva que definirá o caminho a ser percorrido pela linha helicoidal, portanto será 

gerada uma curva que acompanha o eixo longitudinal do duto. Preencha, então, o 

menu lateral com os valores <29.625 0 0> no campo >Vector Coordinates List< e [0 

0 0] no campo >Origin Coordinates List<. 

Essa curva deverá ser repetida ao longo de todo o duto, pois, para a geração de linha 

helicoidal, será feita uma soma de curvas que exige uma segmentação das curvas 

guias. Para isso escolha no menu lateral >Transform<, >Curve< e >Translate<. No 

campo >Direction Vector< insira um vetor igual ao comprimento de cada segmento, 

nesse caso <29.625 0 0>. No campo >Repeat Count< insira >7<, esse valor 

corresponde ao número de passos da armadura helicoidal, como serão gerados dois 

passos e já temos um segmento só são necessários sete segmentos adicionais. Por 

último selecione, com um clique do mouse, a geometria que deverá ser transladada 

(“Curve 1”). Repare que, apesar da linha gerada ser contínua, ela é dividida em oito 

segmentos. 

 

Figura 52: Segmentação da linha longitudinal 
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Resta agora gerar a outra linha guia que será usada na soma de curvas para gerar a 

linha helicoidal, essa curva nada mais é que uma circunferência ao redor do eixo de 

simetria com diâmetro igual ao diâmetro interno da armadura interna. No entanto, 

pelo mesmo motivo já discutido nos últimos parágrafos, essa curva também deve ser 

segmentada, a circunferência será dividida em quatro arcos. Selecione no menu 

lateral >Create<, >Curve< e >2D ArcAngles<. No campo >Radius< preencha >42< 

(média entre raio interno e externo da armadura interna), no campo >Eng Angle< 

>90.0<, no campo >Construction Plane List< >Coord 0.1< e no campo >Center Point 

List< [0 0 0]. 

Após gerar o arco selecione no menu lateral >Transform<, >Curve< e >Rotate<. No 

campo >Axis< insira >Coord 0.1<, no campo >Rotation Angle< >90.0<, no campo 

>Repeat Count< >3< e no campo >Curve List< selecione, com um clique do mouse, 

a curva que será rotacionada (Curve 9). Repare novamente na segmentação da 

circunferência. 

 

Figura 53: Segmentação da circunferência 

Para gerar a linha helicoidal as duas curvas geradas anteriormente, a circunferência e 

a linha longitudinal, devem ser somadas. Selecione no menu lateral >Transform<, 

>Curve< e >Vsum<. No campo >Curve 1 List< devem ser selecionados, com o 

mouse, todos os segmentos da linha longitudinal (Curve 1:8). No campo >Curve 2 

List< devem ser selecionados, com o mouse, todos os segmentos da circunferência. 

Atente que cada segmento da circunferência deve ser selecionado duas vezes, uma 

vez para cada passo da armadura, e que a seleção deve seguir a ordem na qual os 

segmentos aparecerão na linha helicoidal. Portanto, no campo >Curve 2 List<, deve 

ser inserido >Curve 9:12 9:12<. 
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Figura 54: Linha helicoidal 

Agora é necessário criar uma superfície que será extrudada ao longo da linha 

helicoidal para formar o sólido do tendão, a partir do qual será gerada a malha. A 

superfície do tendão é gerada sobre a extremidade da linha helicoidal definida 

anteriormente. Selecione, no menu lateral, >Create<, >Surface< e >XYZ<. No 

campo >Refer. Coordinate Frame< insira >Coord 0<, referente ao sistema de 

coordenadas que deve ser utilizado, no campo >Vector Coordinates List< defina o 

vetor <0 2 5> e no campo >Origin Coordinates List< defina a origem em [0 41 -2.5]. 

Dessa forma obtém-se o perfil a ser extrudado do tendão. 

 

Figura 55: Perfil do tendão a ser extrudado 

Para extrudar esse perfil ao longo da linha helicoidal seleciona-se >Create<, >Solid< 

e >Glide< no menu lateral. O campo >Normal Project Glide< deve ser marcado, no 

campo >Director Curve List< devem ser inseridos os segmentos que definem a linha 

helicoidal (Curve 13:20) e no campo >Base Surface List< deve ser inserida a 

superfície gerada no passo anterior (Surface 4). 
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Figura 56: Sólido da armadura interna 

A geração da armadura externa segue os mesmo procedimentos da armadura interna, 

no entanto, além de divergência em relação ao diâmetro, há também uma diferença 

de orientação dos tendões. Portanto repita todos os passos da armadura interna para a 

armadura externa até a geração da linha helicoidal, sem esquecer de exibir o grupo 

“Arm_ext” e substituir a média entre os raios interno e externo de 42 para 44. 

Após gerar a linha helicoidal há a necessidade de se inverter a orientação da linha. 

Selecione, no menu lateral, >Transform<, >Curve< e >Mirror<. Essa ferramenta 

serve para refletir a curva e, dessa forma, inverter a orientação da linha helicoidal. 

No campo >Define Mirror Plane Normal< selecione o plano >Coord 0.2<, marque o 

campo >Delete Original Curves< e no campo >Curve List< selecione todos os 

segmentos referentes à linha helicoidal da armadura externa. 

 

Figura 57: Linha helicoidal invertida 

Agora que a linha helicoidal da armadura externa já possui orientação correta, 

repetem-se os passos restantes da armadura helicoidal interna para a externa. 
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Figura 58: Sólido da armadura externa 

Concluída a armadura externa a definição da geometria está terminada e, exibindo 

todos os grupos, tem-se: 

 

Figura 59: Todos os elementos da geometria do modelo de riser 

3.2.2 Geração da malha 

A geração das malhas das camadas plásticas e carcaça intertravada segue o mesmo 

procedimento já apresentado nas seções 3.1.1.2 e 3.1.2.2 e, portanto, será feito 

apenas um pequeno resumo. 

As camadas são discretizadas seguindo a Tabela 13 e a Figura 60 (ver seção 3.1.1.2). 

Depois as malhas são revolucionadas ao redor do eixo de simetria para formar a 

malha das camadas tridimensionais (ver seção 3.1.2.2). 
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Tabela 13: Discretização das camadas axissimétricas do riser 

Group Surface ID List Curve List Lenght (mm) Number of Elements 

Carcaça intertravada 1 Surface 1.2 1 2 

Carcaça intertravada 1 Surface 1.3 5 - 

Camada plástica 
interna 

2 Surface 2.2 - 3 

Camada plástica 
interna 

2 Surface 2.3 5 - 

Camada plástica 
externa 

3 Surface 3.2 - 3 

Camada plástica 
externa 

3 Surface 3.3 5 - 

 

Figura 60: Camadas axissimétricas discretizadas 

 

Figura 61: Camadas axissimétricas revolucionadas 

Para gerar as malhas clica–se em >Elements< no menu principal (campo 2 da Figura 

6). As malhas das armaduras helicoidais são geradas a partir dos sólidos criados no 

capítulo anterior. Assim exiba o grupo de uma das armaduras e selecione, no menu 

lateral, >Create<, >Mesh< e Solid. No campo >Element Shape< defina >Hex< e no 

campo >Topology< escolha >Hex8<, esses parâmetros definem o elemento da malha 

que será gerada. No campo >Solid List< escolha, clicando com o mouse e segurando 

a tecla Shift, todos os sólidos componentes do tendão da armadura. O tamanho do 

elemento da malha deve ser inserido no campo >Global Edge Length<, nesse 

trabalho será utilizado o tamanho >5<. Conclua clicando em >Apply<. 
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Feito isso deve-se eliminar os nós excedentes selecionando >Equivalence< e 

>Group< no menu lateral. Na lista de grupos que aparece escolha aquele com o qual 

se está trabalhando e clique em >Apply<. Dessa forma os nós que estão ocupando a 

mesma posição na malha são unificados formando um nó apenas. 

Agora que a malha de um tendão está pronta, pode-se gerar a malha dos demais 

tendões rotacionando a malha do tendão modelado ao redor do eixo de simetria. Para 

facilitar a configuração do atrito, cada tendão deve ser gerado em um grupo 

diferente. Como possuímos 1 tendão modelo, que posteriormente será deletado, e a 

armadura possui 29 ao todo, são necessários 29 grupos adicionais. O tendão modelo 

deve ser copiado para todos os grupos componentes da armadura e, após rotacionado 

para gerar os outros tendões, deletado. 

Então, depois de gerar os grupos adicionais Arm_int_X ou Arm_ext_X (X=1,...,29) 

seguindo as instruções do capítulo 3.1.1.1, selecione, dentro do menu lateral 

>Group<, >Move/Copy< no campo >Action<. No campo >From Group< selecione o 

grupo do tendão modelo >Arm_int< ou >Arm_ext< e no campo >To Group< 

selecione >Arm_int_X< ou >Arm_ext_X< (X=1,...,29). Marque, por último, >Copy< 

e clique em >Apply<. 

Após gerar os 29 grupos adicionais de cada armadura e copiar o tendão modelo 

correspondente para os mesmos, exiba um desses grupos e escolha, no menu lateral 

>Elements<, >Transform<, >Element< e >Rotate<. No campo >Axis< insira >Coord 

0.1<, referente ao eixo de simetria x, no campo >Rotation Angle< defina >12.4138 

vezes X< e no campo >Repeat Count< >1<, essas características correspondem aos 

29 tendões adicionais e ao ângulo de rotação entre eles. Por último selecione todos os 



60 

 

elementos da malha no campo >Element List< e confirme clicando em >Apply<. 

Para o grupo >Arm_int_08< teremos: 

 

Figura 62: Rotação do tendão modelo 

Todos os tendões adicionais (X=1,...,29) são gerados da mesma forma e, após 

armadura estar completa, deleta-se o grupo modelo (Arm_int ou Arm_ext). 

 

Figura 63: Malha dos tendões da armadura interna 

Repetindo esse procedimento para as duas armaduras obtém-se a malha completa do 

duto flexível. 
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Figura 64: Malhas de todas camadas do riser 

3.2.3 Condições de contorno 

As aplicações de pressões interna e externa e deslocamentos em dutos 

tridimensionais já foram tratadas na seção 3.1.2.3 e, portanto, não serão revistas neste 

capítulo. Tanto os deslocamentos, quanto as pressões devem ser modelados de 

maneira análoga àquela vista anteriormente. 

O objetivo desta seção é tratar do atrito em dutos flexíveis, que envolve mais pares 

de contato do que em dutos sanduíche. Para simplificar a modelagem do problema 

não serão configuradas superfícies de contato, mas sólidos que entram em contato 

entre si. Esta abordagem é mais genérica, pois considera todas as superfícies do 

sólido e não apenas aquelas que poderiam entrar em contato com outro sólido. Esse 

método, apesar da modelagem mais simples, envolve um tempo consideravelmente 

maior de simulação, já que até as hipóteses impossíveis de contato, superfícies não 

adjacentes por exemplo, devem ser analisadas quando se determinam sólidos que 

entram em contato um com o outro. 

Nesse trabalho são considerados 61 sólidos de contato: 1 para a carcaça intertravada, 

1 para a camada plástica interna, 1 para a cama plástica externa, 29 para a armadura 

helicoidal interna (um sólido de contato para cada tendão) e 29 para a armadura 

helicoidal externa (um sólido de contato para cada tendão). Por esse motivo foram 

gerados, na seção anterior, grupos diferentes para cada tendão, assim a definição de 

um sólido de contato torna-se mais simples. 
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Primeiro exiba o grupo correspondente ao sólido de contato que se deseja definir: 

Carcaca, Plast_int, Plast_ext, Arm_int_X ou Arm_ext_X (X=1,...,29). Então clique 

em >Loads/BCs< no menu principal (campo 3 da Figura 6) e selecione >Create< e 

>Contact< no menu lateral. No campo >New Set Name< deve-se dar um nome ao 

sólido de contato, ou seja, o nome do grupo que está sendo modelado. No campo 

>Target Element Type< deve ser selecionada a opção >3D< e em >Select 

Application Region< todo o grupo correspondente deve ser selecionado. Repita este 

procedimento para todos os 61 grupos camadas. 

 

Figura 65: Definição de um tendão como sólido de contato 

3.2.4 Definição e atribuição de propriedades 

A definição dos materiais é a mesma já descrita nos capítulos 3.1.1.4 e 3.1.2.4. 

Também é necessário trabalhar com cada camada separadamente, pois cada camada 

possui propriedades distintas. As mudanças em relação aos capítulos anteriores são 

apenas os valores das propriedades e, obviamente, as camadas do riser que são 

diferentes do pipe-in-pipe. 
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Tabela 14: Propriedades dos materiais do riser 

Camada Material E (MPa) ν 

Carcaça intertravada Aço 200000 0,3 

Camada plástica int Plástico int 280 0,3 

Armadura interna Aço 200000 0,3 

Armadura externa Aço 200000 0,3 

Camada plástica ext Plástico ext 320 0,3 

3.2.5 Configuração da Análise 

A configuração da análise é semelhante àquela discutida na seção 3.1.1.5, a mudança 

no duto flexível deve-se à configuração do contato. 

Após seguir as etapas preliminares contidas na seção 3.1.1.5 abra a >Contact Table< 

clicando em >Load Step Creation> e em >Solution Parameters< no menu lateral. No 

duto flexível, devido aos contatos entre as camadas e entre os tendões, a matriz de 

contato é definida conforme ilustrado na Figura 66: 

 

Figura 66: Tabela de contato para o riser 
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Tabela 15: Layout da tabela de contato 

  Ae01 Ae02 ... Ae28 Ae29 Ai01 Ai02 ... Ai28 Ai29 Car Pe Pi 

Ae01   T     T T T ... T T   T   

Ae02 T   ...     T T ... T T   T   

...   ...   ...   

... 

... ... 

... 

...   

...   

Ae28     ...   T T T ... T T   T   

Ae29 T     T   T T ... T T   T   

Ai01 T T ... T T   T     T     T 

Ai02 T T ... T T T   ...         T 

... 

... 

... ... 

... 

...   ...   ...       

... 

Ai28 T T ... T T     ...   T     T 

Ai29 T T ... T T T     T       T 

Car                         T 

Pe T T ... T T                 

Pi           T T ... T T T     

 

Onde: 

Ae: representa grupos Arm_ext (armadura externa) 

Ai: representa grupos Arm_int (armadura interna) 

Car: representa o grupo da carcaça intertravada 

Pe: representa o grupo Plast_ext (camada plástica externa) 

Pi: representa o grupo Plast_int (camada plástica interna) 

O coeficiente de atrito entre cada camada foi considerado da ordem de 0,5. Cada 

tendão, além do atrito com as camadas plásticas interna ou externa, entra em 

contanto com os tendões adjacentes dentro da mesma armadura e com todos os 

tendões da armadura vizinha. A carcaça intertravada só forma par de contato com a 

camada plástica interna. Com o contato devidamente configurado e seguindo as 

demais etapas descritas na seção 3.1.1.5 o modelo está apto a ser simulado. 
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4 DESCRIÇÃO DO MÉTODO DOS ELEMENTOS FINITOS 

O Método dos Elementos Finitos teve início em estudos de mecânica estrutural entre 

1940 e 1960 (Schäfer, 2005) e atualmente, devido ao avanço tecnológico dos 

computadores, sua aplicação é bastante usual. 

A utilização do Método dos Elementos Finitos baseia-se no Método de Galerkin, que 

será introduzido através de um exemplo (ver Schäfer, 2005). 

Consideremos então a equação de Poisson: 

 −
𝜕2∅

𝜕𝑥𝑖𝜕𝑥𝑖
= 𝑓 (1)  

Em mecânica dos sólidos ∅ pode representar o deslocamento no eixo i (i=1, 2 e 

3) e f pode representar forças externas distribuídas por unidade de volume. Em 

uma região V as condições de contorno são: 

1: ∅ = ∅𝑆  (representa deslocamento em S1) 

2: 𝜕∅

𝜕𝑥𝑖
𝑛𝑖 = 𝑡𝑆 

(representa tensão em S2) 

 

Figura 67: Volume "V" qualquer 

Onde a união das superfícies S1 e S2 resultam na superfície total da região V. 

Para a função procurada ∅ = ∅ 𝑥  temos a seguinte aproximação: 

 ∅ 𝑥 = 𝜑0 𝑥 +  𝑐𝑘𝜑𝑘(𝑥)

𝑁

𝑘=1

 (2)  
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A função 𝜑0 𝑥  deve satisfazer a condição de contorno 1, isto é, 𝜑0 = ∅𝑆 em 𝑆1. As 

funções 𝜑𝑘  (k=1,...,N) restantes devem satisfazer a solução homogênea, ou seja, 

𝜑𝑘 = 0 em 𝑆1. 

Substituindo a solução aproximada (2) na equação de Poisson (1), obtém-se: 

 −
𝜕2𝜑0

𝜕𝑥𝑖𝜕𝑥𝑖
− 𝑐𝑘

𝜕2𝜑𝑘

𝜕𝑥𝑖𝜕𝑥𝑖

𝑁

𝑘=1

= 𝑓 (3)  

Esta equação não é satisfeita para qualquer coeficiente 𝑐𝑘 . Define-se então o resíduo 

R entre a aproximação e função f: 

 𝑅 = −
𝜕2𝜑0

𝜕𝑥𝑖𝜕𝑥𝑖
− 𝑐𝑘

𝑁

𝑘=1

𝜕2𝜑𝑘

𝜕𝑥𝑖𝜕𝑥𝑖
− 𝑓 (4)  

A redução do erro é feita forçando os erros a zero em alguns pontos ou regiões. Isso 

pode ser alcançado igualando a integral ponderada do resíduo a zero. 

Para j= 1,...,N: 

  𝑅𝜔𝑗𝑑𝑉 = 0
 

𝑉

 (5)  

Esse sistema de equações pode ser utilizado para calcular os coeficientes 𝑐𝑘  e chama-

se método dos resíduos ponderados. 

Caso as funções de ponderação 𝜔𝑗  (j=1,...;N) sejam iguais às funções de 

aproximação 𝜑𝑘  (k=1,...,N) tem-se então o método de Galerkin. Assim, para 

j=1,...,N: 

  𝑅𝜑𝑗𝑑𝑉 = 0
 

𝑉

 (6)  

Substituindo a expressão de R (4) em (6) temos: 

 − 
𝜕2𝜑0

𝜕𝑥𝑖𝜕𝑥𝑖
𝜑𝑗𝑑𝑉 −   𝑐𝑘

𝜕2𝜑𝑘

𝜕𝑥𝑖𝜕𝑥𝑖
𝜑𝑗𝑑𝑉 =  𝑓𝜑𝑗𝑑𝑉

 

𝑉

𝑁

𝑘=1

 

𝑉

 

𝑉

 (7)  

Desenvolvendo essa expressão: 

 − 
𝜕2𝜑0

𝜕𝑥𝑖𝜕𝑥𝑖
𝜑𝑗𝑑𝑉 − 𝑐𝑘  

𝜕2𝜑𝑘

𝜕𝑥𝑖𝜕𝑥𝑖
𝜑𝑗𝑑𝑉

 

𝑉

𝑁

𝑘=1

 

𝑉

=  𝑓𝜑𝑗𝑑𝑉
 

𝑉

 (8)  

Aplicando o Teorema de Gauss: 
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𝜕𝜑0

𝜕𝑥𝑖

𝜕𝜑𝑗

𝑥𝑖
𝑑𝑉 −  

𝜕𝜑0

𝜕𝑥𝑖
𝜑𝑗𝑛𝑖𝑑𝑆

 

𝑆

 

𝑉

+  𝑐𝑘   
𝜕𝜑𝑘

𝜕𝑥𝑖

𝜕𝜑𝑗

𝜕𝑥𝑖
𝑑𝑉

 

𝑉

− 
𝜕𝜑𝑘

𝜕𝑥𝑖
𝜑𝑗𝑛𝑖𝑑𝑆

 

𝑆

 

𝑁

𝑘=1

=  𝑓𝜑𝑗𝑑𝑉
 

𝑉

 

(9)  

Como as funções 𝜑𝑗 , conforme definido anteriormente, são nulas em 𝑆1, pode-se 

integrar as integrais de superfície apenas em 𝑆2, pois as duas superfícies unidas 

representam o todo (𝑆). Assim a expressão (9) pode ser reescrita como: 

 
𝜕𝜑0

𝜕𝑥𝑖

𝜕𝜑𝑗

𝜕𝑥𝑖
𝑑𝑉

 

𝑉

+  𝑐𝑘  
𝜕𝜑𝑘

𝜕𝑥𝑖

𝜕𝜑𝑗

𝜕𝑥𝑖
𝑑𝑉

 

𝑉

𝑁

𝑘=1

=  𝑓𝜑𝑗𝑑𝑉
 

𝑉

+  
𝜕

𝜕𝑥𝑖
 𝜑0 +  𝑐𝑘𝜑𝑘

𝑁

𝑘=1 

 𝑛𝑖𝜑𝑗𝑑𝑆
 

𝑆2

  

(10)  

 

Como ∅ = 𝜑0 +  𝑐𝑘𝜑𝑘
𝑁
𝑘=1 : 

 

 
𝜕𝜑0

𝜕𝑥𝑖

𝜕𝜑𝑗

𝜕𝑥𝑖
𝑑𝑉

 

𝑉

+  𝑐𝑘  
𝜕𝜑𝑘

𝜕𝑥𝑖

𝜕𝜑𝑗

𝜕𝑥𝑖
𝑑𝑉

 

𝑉

𝑁

𝑘=1

=  𝑓𝜑𝑗𝑑𝑉
 

𝑉

+  
𝜕∅

𝜕𝑥𝑖
𝑛𝑖𝜑𝑗𝑑𝑆

 

𝑆2

  

(11)  

Assim podemos substituir a segunda condição de contorno na expressão (11). Logo, 

para todo j=1,...,N: 

 

 
𝜕𝜑0

𝜕𝑥𝑖

𝜕𝜑𝑗

𝜕𝑥𝑖
𝑑𝑉

 

𝑉

+  𝑐𝑘  
𝜕𝜑𝑘

𝜕𝑥𝑖

𝜕𝜑𝑗

𝜕𝑥𝑖
𝑑𝑉

 

𝑉

𝑁

𝑘=1

=  𝑓𝜑𝑗𝑑𝑉
 

𝑉

+  𝑡𝑆𝜑𝑗𝑑𝑆
 

𝑆2

 

(12)  

 

Resulta, dessa forma, um sistema de equações lineares com N equações e N 

incógnitas, representadas pelos coeficientes 𝑐𝑘 : 

  𝑺 𝒄  = 𝒃    (13)  

Onde: 

𝑆𝑘𝑗 =  
𝜕𝜑𝑘

𝜕𝑥𝑖

 

𝑉

𝜕𝜑𝑗

𝜕𝑥𝑖
𝑑𝑉 



68 

 

𝑏𝑗 =  𝑡𝑆𝜑𝑗𝑑𝑆 +  𝑓𝜑𝑗𝑑𝑉 −  
𝜕𝜑0

𝜕𝑥𝑖

𝜕𝜑𝑗

𝜕𝑥𝑖
𝑑𝑉

 

𝑉

 

𝑉

 

𝑆2

 

A matriz S é chamada de matriz de rigidez e o vetor b de vetor de carregamento. 

Através da solução do sistema (13) os coeficientes 𝑐𝑘  podem ser determinados e uma 

solução, que satisfaz a expressão (2), alcançada. 

O método de Galerkin é determinado pela função de aproximação 𝜑𝑘 . Se essa função 

for polinomial e dividida em partes, tem-se o Método dos Elementos Finitos. Assim, 

pode-se afirmar que o Método dos Elementos Finitos é uma aplicação do Método de 

Galerkin empregando um tipo específico de função de aproximação. 
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5 RESULTADOS 

Este capítulo dedica-se à comparação entre os resultados de modelos analíticos 

obtidos na literatura e os resultados obtidos numericamente pelo método dos 

elementos finitos. 

5.1 Duto sanduíche (pipe-in-pipe)  

O duto pipe-in-pipe será simulado através do Método dos Elementos Finitos, 

seguindo os modelos discutidos no Capítulo 3. Serão analisados 3 carregamentos 

distintos: 

1- Tração pura 

2- Tração e pressões interna e externa 

3- Flexão 

Os parâmetros de cada carregamento estão reunidos na Tabela 16.Em todos os casos 

foi considerado o atrito entre as camadas, que foi modelado como atrito de Coulomb 

com coeficiente de atrito igual a 0,5. 

Tabela 16: Tabela de parâmetros dos carregamentos 

Carregamento p0 (MPa) pi (MPa) M (N.mm) Δl (mm) 

1 - - - 1 

2 10 1 - 1 

3 - - 500000 - 

A geometria e propriedades dos materiais permanecem as mesmas descritas no 

Capítulo 3. 

5.1.1 Análise de pipe-in-pipe sob carregamentos axissimétricos 

A análise da tração partiu do modelo ilustrado na Figura 68: 
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Figura 68: Modelo de pipe-in-pipe sob carregamentos axissimétricos 

Onde as pressões interna e externa só se aplicam para o caso 2 e a tração T foi 

simulada impondo um deslocamento (1 mm) na extremidade livre do duto. 

Os resultados obtidos através do Método dos Elementos Finitos foram comparados 

com soluções analíticas, onde algumas simplificações são feitas. 

5.1.1.1 Modelo analítico de pipe-in-pipe sob carregamentos axissimétricos 

O modelo analítico baseia-se na teoria clássica da elasticidade (Timoshenko & 

Goodier, 1970) que considera as seguintes hipóteses: 

 material com comportamento elástico-linear; 

 material homogêneo e isótropo; 

 linearidade geométrica; 

 continuidade do meio material; 

 carregamento axissimétrico e uniforme ao longo do eixo do tubo; 

 seções planas permanecem planas após a deformação; 

 todas as camadas adjacentes estão perfeitamente grudadas, 

 forças de atrito entre as camadas são desprezíveis; 

 deslocamento axial na extremidade livre igual para todas as camadas. 
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Figura 69: Sistema de coordenadas cilíndrico 

Usando um sistema de coordenadas cilíndrico (Figura 69) obtém-se, devido à 

simetria do problema (simetria da estrutura e do carregamento), as seguintes relações 

para os deslocamentos em uma camada j (j=1,2 e 3) do pipe-in-pipe: 
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Figura 70: Modelo do pipe-in-pipe 

Substituindo as expressões (14)  dos deslocamentos nas relações entre deslocamentos 

e deformações (Timoshenko & Goodier, 1970): 
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Substituindo as expressões obtidas para as deformações nas equações constitutivas 

(Timoshenko & Goodier, 1970) obtém-se as seguintes expressões para as tensões: 
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Onde λ e G são as constantes de Lammé dadas por: 
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Pelas equações diferenciais de equilíbrio (Timoshenko & Goodier, 1970) temos: 
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Por fim substitui-se as expressões das tensões (16) nas relações (18). Da 3ª equação 

tem-se: 
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Como temos uma superfície engastada (𝑢𝑧 0 = 0) e um deslocamento prescrito na 

superfície livre (𝑢𝑧 𝑙 = 𝛿0): 
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Da 1ª equação das relações 18: 
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Para cada camada j (j=1,2 e 3) teremos, dessa forma, duas constantes (C1 e C2) que 

são funções da geometria da camada (Rij e R0j), das constantes elásticas (Ej, Gj, λj e 

νj), da deformação longitudinal (𝜀𝑧 = 𝛿0 𝑙 ), que é a mesma para todas as camadas, e 

das pressões nas superfícies da camada (p0j e pij). 

As condições de contorno aplicadas a uma camada são: 

 
𝜍𝑟𝑗  𝑟𝑖𝑗  = −𝑝𝑖𝑗  

𝜍𝑟𝑗  𝑟0𝑗  = −𝑝0𝑗  
(23)  

Assim obtém-se para as constantes: 
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(24)  

Após ter considerado cada camada individualmente, aplica-se as condições de 

contorno gerais: 

 Compatibilidade de deslocamentos entre camadas 

1. 𝑢𝑟1 𝑟01 = 𝑢𝑟2(𝑟𝑖2) 𝑟01 = 𝑟𝑖2 

2. 𝑢𝑟2 𝑟02 = 𝑢𝑟3(𝑟𝑖3) 𝑟02 = 𝑟𝑖3 

 Compatibilidade de pressões entre camadas 

𝑝𝑖1 = 𝑝𝑖  
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𝑝01 = 𝑝𝑖2 = 𝑝𝑐12 

𝑝02 = 𝑝𝑖3 = 𝑝𝑐23 

𝑝03 = 𝑝0 

 Equilíbrio de forças na direção axial 

3. 𝜍𝑧1 = 𝐸1𝜀𝑧 +
2𝜐1 𝑝𝑖1𝑟𝑖1

2 −𝑝01𝑟01
2  

 𝑟01
2 −𝑟𝑖1

2  
=
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𝜋 𝑟01
2 −𝑟𝑖1

2  
 

4. 𝜍𝑧2 = 𝐸2𝜀𝑧 +
2𝜐2 𝑝𝑖2𝑟𝑖2

2 −𝑝02𝑟02
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2 −𝑟𝑖2
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=
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2 −𝑟𝑖2
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5. 𝜍𝑧3 = 𝐸3𝜀𝑧 +
2𝜐3 𝑝𝑖3𝑟𝑖3

2 −𝑝03𝑟03
2  

 𝑟03
2 −𝑟𝑖3

2  
=

𝑇3

𝜋 𝑟03
2 −𝑟𝑖3

2  
 

6. 𝑇 = 𝑇1 + 𝑇2 + 𝑇3 

Dessa forma nosso sistema possui 6 equações e 6 incógnitas: pc12, pc23, T, T1, T2 e T3. 

Resolvendo o sistema podemos calcular o campo de deslocamentos e de tensões para 

cada camada e compará-los com os valores provenientes do Método dos Elementos 

Finitos. O sistema foi solucionado através do software Matlab e o código 

implementado encontra-se no Anexo A. 

5.1.1.2 Comparação dos resultados 

Os resultados obtidos numericamente (Anexos C e D) foram confrontados com os 

obtidos analiticamente comparando-se os valores das tensões radiais e axiais. 

Caso 1 (tração pura) 

Os valores encontrados estão no Gráfico 1, no Gráfico 2 e na Tabela 17. 

 

Gráfico 1: Tensão axial x Raio (Caso 1) 
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Gráfico 2: Tensão radial x Raio (Caso 1) 

Tabela 17: Resultados para o caso 1 

 
Modelo Analítico Elementos Finitos 

σ (MPa) Rij (Rij+Roj)/2 R0j Rij (Rij+Roj)/2 R0j 

σr1 0,00 0,02 0,05 0,00 0,00 0,00 

σz1 400,37 400,37 400,37 400,46 400,46 400,46 

σr2 0,05 0,05 0,06 0,00 0,00 0,00 

σz2 2,67 2,67 2,67 2,61 2,61 2,61 

σr3 0,06 0,03 0,00 0,00 0,00 0,00 

σz3 399,48 399,48 399,48 400,56 400,56 400,56 

Os resultados evidenciam que o modelo analítico se aproxima com uma precisão 

razoável do modelo de elementos finitos. As divergências podem ter sido causadas 

pela hipótese de aderência perfeita entre as camadas no desenvolvimento do modelo 

analítico, já que na simulação do modelo de elementos finitos houve separação das 

camadas. Outro fator de discordância é o atrito, que é desprezado no modelo 

analítico e considerado no modelo de elementos finitos. 

As tensões radiais calculadas pelo métodos dos elementos finitos são muito 

pequenas, da ordem de 10
-9

 MPa, e foram consideradas nulas neste caso. Até mesmo 

as tensões radiais calculadas pelo modelo analítico são bem pequenas. As tensões 

axiais mostraram o mesmo comportamento nos dois modelos, as tensões são 
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constantes dentro de cada camada e apresentam valores bastante similares nos dois 

modelos. 

Caso 2 (tração mais pressões) 

Os valores encontrados estão no Gráfico 3, no Gráfico 4, no Gráfico 5 e na Tabela 

18. 

 

Gráfico 3: Tensão radial x Raio (Caso 2) 

 

Gráfico 4: Tensão axial x Raio (Caso 2) 
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Gráfico 5: Tensão tangencial x Raio (Caso 2) 

Tabela 18: Resultados para o caso 2 

 
Modelo Analítico Elementos Finitos 

σ (MPa) Rij (Rij+Roj)/2 R0j Rij (Rij+Roj)/2 R0j 

σr1 -1,00 -3,15 -5,17 -1,73 -3,14 -4,51 

σz1 367,47 367,47 367,47 369,30 369,12 369,08 

σθ1 -107,42 -105,28 -103,25 -107,14 -105,20 -103,8 

σr2 -5,17 -5,03 -4,92 -5,13 -5,03 -4,94 

σz2 -0,25 -0,25 -0,25 -0,25 -0,24 -0,23 

σθ2 -3,22 -3,36 -3,47 -3,23 -3,35 -3,46 

σr3 -4,92 -7,52 -10,00 -5,80 -7,52 -9,19 

σz3 350,57 350,57 350,57 352,31 352,23 352,11 

σθ3 -159,86 -157,25 -154,78 -159,73 -157,43 -155,20 

Os resultados apontam que as tensões, calculadas nos dois modelos, estão de acordo. 

As tensões axiais apresentam, novamente, valores constantes dentro das camadas em 

ambos os modelos e seus valores são bem parecidos. No caso da tensão tangencial os 

valores obtidos são quase idênticos e apresentam a mesma variação com o raio nas 

camadas. 

No entanto as tensões radiais são causadoras de discordâncias. As tensões radiais nos 

elementos finitos não coincidem com as condições de contorno impostas (pressões 

interna e externa) e também apresentam valores diferentes numa região de contato 

entre as camadas. No decorrer das simulações notou-se que esse erro das condições 
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de contorno está atrelado à interpolação da tensão feita pelo Marc nos nós da malha 

de elementos finitos. Os valores da tensão tendem às condições impostas quanto mais 

refinada for a malha.  

No entanto quando comparados os deslocamentos em uma região de contato, não 

houve infrações das equações de compatibilidade. Dessa forma, apesar de as pressões 

nas áreas de contato não estarem compatíveis, o deslocamento é o mesmo em ambas 

as superfícies que formam o par de contato. 

5.1.2 Análise de pipe-in-pipe sob flexão pura 

A análise de um pipe-in-pipe sob flexão pura foi feita utilizando o modelo ilustrado 

na Figura 71: 

 

Figura 71: Modelo de carregamento de flexão 

Devido à simetria o modelo pode ser simplificado: 

 

Figura 72: Simplificação do carregamento de flexão 

Assim como foi feito na análise da tração, esse modelo será avaliado através do 

Método dos Elementos Finitos e através de um modelo analítico. 

5.1.2.1 Modelo analítico de pipe-in-pipe sob flexão pura 

Em virtude da complexidade das equações de elasticidade no caso da flexão, foi 

escolhido um modelo mais simples para validar os resultados das simulações. 

Admitindo que as seções planas permanecem planas após a deformação, temos: 
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Figura 73: Seção antes e depois da deformação 

Onde o raio de curvatura (ρ) e a curvatura (k) se relacionam através da expressão 

(25) e são os mesmos para todas as camadas: 

 


1
k  (25)  

Pode-se também calcular a deformação na fibra B’-D’ da camada j (j= 1, 2 e 3) 

através do comprimento inicial (dxoj) e final (dxfj): 

 

ddx j 0  

 dydx jfj )(   
(26)  

 ky
y

d

ddy
j

jj

j 








)(

 (27)  

Pela Lei de Hooke: 

 
jjjjj kyEE  
 (28)  

O momento fletor associado a esta distribuição de tensões na seção transversal é: 

 dAyM jjj   (29)  

Substituindo (28) em (29): 

 kIEdAykEdAkyEM jjjjjj )(22   (30)  

Onde Ij é o momento de inércia da camada j que é dado por: 

 )(
64

44

0 ijjj DDI 


 (31)  

 

Como a somatória do momento em cada camada é igual ao momento aplicado: 
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  kIEMMM jjj  00  (32)  

Isolando a curvatura k na expressão (32): 

 
jj IE

M
k


 0  (33)  

Substituindo a expressão (33) na expressão (28) obtém-se uma expressão para a 

tensão normal dentro de uma camada em função do momento aplicado (M0), da 

rigidez equivalente e da distância até o eixo central (yj). 

 jj

jj

j yE
IE

M


 0  (34)  

Assim pode-se calcular (Anexo B) a tensão normal em cada camada e comparar os 

valores encontrados com os obtidos na simulação. 

5.1.2.2 Comparação dos resultados 

Os resultados obtidos numericamente (Anexo E) foram confrontados com os obtidos 

analiticamente analisando-se os valores das tensões axiais nas diferentes camadas. 

Caso 3 (flexão pura) 

Os valores encontrados estão no Gráfico 6 e na Tabela 19. 

 

Gráfico 6: Tensão axial x Raio (Caso 3) 
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Tabela 19: Resultados para o caso 3 

  Modelo Analítico Elementos Finitos 

σ (MPa) Rij (Rij+Roj)/2 R0j Rij (Rij+Roj)/2 R0j 

σz1 11,67 11,82 12,16 12,00 12,20 12,40 

σz2 0,08 0,08 0,09 0,08 0,09 0,09 

σz3 14,10 14,35 14,59 14,50 14,70 14,90 

Os resultados obtidos nos dois modelos, numérico e analítico, estão de acordo, só 

ocorrendo pequenos desvios. A variação linear da tensão radial em relação ao raio foi 

observada nos dois modelos, tanto no analítico quanto no de elementos finitos. 

5.2 Duto flexível (riser) 

O modelo do duto flexível gerado na seção 3.2, devido aos inúmeros pares de contato 

e à geometria complexa, é incapaz de ser simulado em um computador pessoal. Esse 

modelo requer uma quantidade de memória de processamento superior às 

encontradas nos computadores comuns. Por essa razão será simulado apenas um 

tendão da armadura helicoidal para fins de validação do modelo. 

Esse tendão será submetido a carregamentos de flexão pura e os resultados obtidos 

serão comparados aos do modelo analítico desenvolvido por (Costello, 1977). O 

carregamento será o ilustrado abaixo: 

 

Figura 74: Flexão pura no tendão helicoidal 

Serão estudados dois casos, um com uma mola helicoidal de 5 espiras (Caso 4) e 

outro com 10 espiras (Caso 5). Será analisada a variação dos deslocamentos na 

extremidade do tendão em função do momento aplicado. Para cada caso será 

avaliada uma seção transversal circular (raio 2,5 mm), que pode ser comparada ao 

modelo de (Costello, 1977). A espira da mola analisada possui 44 mm de raio e seu 

passo apresenta 118,5 mm de comprimento ao longo do eixo central da espira. 
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5.2.1 Modelo analítico do riser sob flexão pura 

O modelo analítico foi retirado de (Costello, 1977). As equações de equilíbrio para 

uma haste fina e curva são: 

 
𝑑𝑁

𝑑𝑠
− 𝑁′𝜏1 + 𝑇𝜅′1 + 𝑋 = 0 (35)  

 
𝑑𝑁′

𝑑𝑠
− 𝑇𝜅1 + 𝑁𝜏1 + 𝑌 = 0 (36)  

 
𝑑𝑇

𝑑𝑠
− 𝑁𝜅′1 + 𝑁′𝜅1 + 𝑍 = 0 (37)  

 
𝑑𝐺

𝑑𝑠
− 𝐺 ′𝜏1 + 𝐻𝜅′1 − 𝑁′ + 𝐾 = 0 (38)  

 
𝑑𝐺 ′

𝑑𝑠
− 𝐻𝜅1 + 𝐺𝜏1 + 𝑁 + 𝐾′ = 0 (39)  

 
𝑑𝐻

𝑑𝑠
− 𝐺𝜅1

′ + 𝐺 ′𝜅1 + Θ = 0 (40)  

Onde s é a distância ao longo da linha de centro da haste; κ1, κ'1 são componentes da 

curvatura final; τ1 é a torção final, X, Y, Z, K, K' e ϴ são componentes de força e de 

momento distribuído por unidade de comprimento ao longo da haste; e N, N', T, G, 

G' e H são componentes de força e de momento atuando na seção transversal. Se a 

seção transversal da barra helicoidal é circular, então os momentos fletores e de 

torção, G, G' e H, estão relacionados às curvaturas iniciais, κ0, κ'0, e à torção inicial, 

τ0, por: 

 𝐺 = 𝐴 𝜅1 − 𝜅0 ; 𝐺
′ = 𝐴(𝜅′1 − 𝜅′0); 𝐻 = 𝐶(𝜏1 − 𝜏0) (41)  

onde 𝐴 =
𝜋𝐸𝑅4

4
; 𝐶 =

𝜋𝐸𝑅4

4  1+𝜐 
; E é o módulo de elasticidade; ν é o coeficiente de 

Poisson e R é o raio da seção transversal. 

Como a haste é inicialmente helicoidal, as curvaturas iniciais e a torção da haste são: 

 𝜅0 = 0; 𝜅0
′ =

cos 2 𝛼

𝑟
; 𝜏0 =

sin 𝛼 cos 𝛼

𝑟
 (42)  

onde α é o ângulo de assentamento da linha helicoidal e r é o raio da espira (Figura 

75). 

A haste helicoidal é então deformada sob a ação de momentos de flexão pura 

aplicados nas extremidades da haste. Assim X = Y = Z = K = K' = ϴ = 0 e, como não 

há forças resultantes na seção transversal, N = N' = T = 0. 
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As equações 35, 36 e 37 estão satisfeitas e as equações 38, 39 e 40 tornam-se: 

 
𝑑𝐺

𝑑𝑠
− 𝐺 ′𝜏1 + 𝐻𝜅1

′ = 0 (43)  

 
𝑑𝐺 ′

𝑑𝑠
− 𝐻𝜅1 + 𝐺𝜏1 = 0 (44)  

 
𝑑𝐻

𝑑𝑠
− 𝐺𝜅1

′ + 𝐺 ′𝜅1 = 0 (45)  

Por virtude das equações 41 e 42, as equações de equilíbrio, 43, 44 e 45, podem ser 

escritas como: 

 
𝑑𝐺

𝑑𝑠
+  

1

𝐴
−

1

𝐶
 𝐺 ′𝐻 −

sin𝛼 cos 𝛼

𝑟
𝐺 ′ +

cos2 𝛼

𝑟
𝐻 = 0 (46)  

 
𝑑𝐺 ′

𝑑𝑠
−  

1

𝐴
−

1

𝐶
 𝐺𝐻 +

sin 𝛼 cos 𝛼

𝑟
𝐺 = 0 (47)  

 
𝑑𝐻

𝑑𝑠
−

cos2 𝛼

𝑟
𝐺 = 0 (48)  

Equações 46, 47 e 48 constituem um sistema de equações diferenciais ordinárias não 

linear de primeira ordem que pode ser integrado numericamente sob certas condições 

iniciais. 

Se as equações 46, 47 e 48 forem, respectivamente, multiplicadas por G, G' e H e as 

equações resultantes adicionadas, o seguinte resultado é obtido: 

 
1

2

𝑑

𝑑𝑠
 𝐺2 + 𝐺 ′2 + 𝐻2 = 0 (49)  

que indica que a magnitude do momento resultante em qualquer seção transversal é 

constante. 

Uma vez que as equações 46, 47 e 48 forem integradas numericamente para G, G' e 

H, a equação 41 pode ser utilizada para calcular as curvaturas finais κ1 e κ'1 e a 

torção final τ1. Sabendo as curvaturas finais e a torção, a tensão torsional final pode 

ser calculada e a deformação da linha de centro da haste deformada está 

completamente determinada independente de sua posição no espaço. 

Porém uma abordagem mais prática seria assumir que, sob a ação de flexão pura, M, 

aplicada perpendicularmente ao eixo original da linha helicoidal, a haste se comporta 

como uma barra conforme ilustrado na Figura 75. O eixo da haste então se deforma 

em um círculo de raio ρ. 
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Figura 75: Deformação da haste helicoidal sob flexão pura 

Considere o caso onde ν = 0 (A = C). As equações 46, 47 e 48 tornam-se lineares e a 

solução do sistema é: 

 𝐺 = 𝐶1 cos 𝑘𝑠 + 𝐶2 sin 𝑘𝑠 (50)  

 𝐻 = 𝐶1 cos 𝛼 sin 𝑘𝑠 − 𝐶2 cos 𝛼 cos 𝑘𝑠 + 𝐶3 (51)  

 𝐺 ′ = −𝐶1 sin 𝛼 sin 𝑘𝑠 + 𝐶2 sin 𝛼 cos 𝑘𝑠 +
cos𝛼

sin 𝛼
𝐶3 (52)  

onde 𝑘 =
cos 𝛼 

𝑟
. Igualando 𝐺 = −𝑀, 𝐻 = 0 e 𝐺 ′ = 0 em 𝑠 = 0 obtém-se: 

 𝐺 = −𝑀 cos 𝑘𝑠 ;𝐻 = −𝑀 cos𝛼 sin 𝑘𝑠; 𝐺 ′ = 𝑀 sin 𝛼 sin 𝑘𝑠 (53)  

A solução exata (Equação 53) das equações lineares (ν = 0) pode ser usada como a 

primeira aproximação no método de Picard para se obter uma solução para o sistema 

de equações não-lineares (Equações 46, 47 e 48). A substituição da equação 53 nas 

equações 46, 47 e 48 fornece: 

 
𝑑𝐺

𝑑𝑠
=  

1

𝐴
−

1

𝐶
 sin 𝛼 cos 𝛼𝑀2 sin2 𝑘𝑠 +

cos 𝛼

𝑟
𝑀 sin 𝑘𝑠 (54)  

 
𝑑𝐺 ′

𝑑𝑠
=  

1

𝐴
−

1

𝐶
 cos 𝛼𝑀2 sin 𝑘𝑠 cos 𝑘𝑠 +

sin 𝛼 cos 𝛼

𝑟
 𝑀 cos 𝑘𝑠 (55)  
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𝑑𝐻

𝑑𝑠
= −

cos2 𝛼

𝑟
𝑀 cos 𝑘𝑠 (56)  

Como G(0) = -M, G'(0) = 0, H(0) = 0, a integração das equações 25, 26 e 27 resulta 

em: 

 𝐺 =  
1

𝑎
−

1

𝐶
 

sin 𝛼 cos 𝛼

2
 𝑀2  𝑠 −

sin 2𝑘𝑠

2𝑘
 − 𝑀 cos 𝑘𝑠 (57)  

 𝐺 ′ =  
1

𝐴
−

1

𝐶
 

cos 𝛼

2𝑘
 𝑀2 sin2 𝑘𝑠 + 𝑀 sin 𝛼 sin 𝑘𝑠 (58)  

 𝐻 = −𝑀 cos𝛼 sin 𝑘𝑠 (59)  

A energia de deformação, U, na haste helicoidal pode ser dada por: 

 

𝑈 =
1

2
  

𝐺2

𝐴
+
𝐺 ′2

𝐴
+
𝐻2

𝐶
 𝑑𝑠

1

0

=
1

2
  1

−
𝐴

𝐶
 

2 𝑀4 cos2 𝛼

4𝐴3𝑘3
 sin2 𝛼  

𝜙3

3
−

sin 2𝜙

4

+
𝜙 cos 2𝜙

2
+
𝜙

8
−

sin 4𝜙

32
 +

3

8
𝜙 −

sin 2𝜙

4

+
sin 4𝜙

32
 

+  1 −
𝐴

𝐶
 
𝑀3 sin 𝛼 cos 𝛼

𝐴2𝑘2
 −

9

4
cos𝜙 − 𝜙 sin𝜙

−
cos3 𝜙

12
+

cos3 𝜙

3
+ 2 

+
𝑀2

2𝑘𝐴
 𝜙 +

sin 2𝜙

2

+  sin2 𝛼 +
𝐴

𝐶
cos2 𝛼  𝜙 −

sin 2𝜙

2
    

(60)  

onde ϕ = kl. Assumindo que a linha helicoidal possui n espiras ϕ = 2πn. Assim a 

equação 60 pode ser desenvolvida em: 

 𝑈 = 𝜅1𝑀
4 + 𝜅2𝑀

2  (61)  
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 𝜅1 =
1

8

𝜐2 cos2 𝛼

𝐴3𝑘3
 2𝜋𝑛  

3

8
+  

 2𝜋𝑛 2

3
+

5

8
 sin2 𝛼  (62)  

 𝜅2 =
1

4𝐴𝑘
2𝜋𝑛 2 + 𝜐 cos2 𝛼  (63)  

Igualando o trabalho realizado pelo momento fletor, M, à energia de deformação 

tem-se: 

 𝜅1𝑀
4 + 𝜅2𝑀

2 =  𝑀

𝜃

0

𝑑𝜃 (64)  

Derivando a equação 64 obtém-se: 

  4𝜅1𝑀
2 + 2𝜅2 

𝑑𝑀

𝑑𝜃
= 1  (65)  

Enquanto a integração da equação 65 resulta em 

 
4

3
𝜅1𝑀

3 + 2𝜅2𝑀 = 𝜃 (66)  

já que M(0) = 0. Igualando 𝜃 =
𝑙 sin 𝛼

𝜌
, a seguinte expressão é obtida para a a 

curvatura: 

 
1

𝜌
=

𝜐2𝑟2

6 sin 𝛼
 
3

8
+  

 2𝜋𝑛 2

3
+

5

8
 sin2 𝛼  

𝑀

𝐸𝐼
 

3

+
 2 + 𝜈 cos2 𝛼 

2 sin 𝛼

𝑀

𝐸𝐼
  (67)  

onde 𝐼 =
𝜋𝑅4

4
. 

A curvatura calculada através da equação 67 pode ser utilizada para determinar os 

deslocamentos na linha central na extremidade da mola. 

 

Figura 76: Deslocamentos nas extremidades da mola helicoidal 

θ

ρ

Δy

Δx
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 Δ𝑥 = ℎ − 𝜌 sin 𝜃 (68)  

 Δ𝑦 = 𝜌 1 − cos 𝜃  (69)  

Esses deslocamentos são comparados aos valores dos deslocamentos na extremidade 

da mola no modelo de elementos finitos. 

5.2.2 Comparação dos resultados 

Os resultados obtidos numericamente (Anexos F e G) foram confrontados com os 

obtidos analiticamente comparando-se os valores dos deslocamentos. 

Caso 4 (Mola com 5 espiras) 

Os valores encontrados estão no Gráfico 7 e no Gráfico 8. 

 

Gráfico 7: Variação no eixo y da extremidade da mola (Caso 4) 

 

Gráfico 8: Variação no eixo x da extremidade da mola (Caso 4) 

Os resultados apresentam grandes discrepâncias. Os deslocamentos são maiores no 

modelo de elementos finitos, o delta y é cerca de 45% maior e o delta x é quase o 

dobro do valor obtido no modelo analítico. 
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Caso 5 (Mola com 10 espiras) 

Os valores encontrados estão no Gráfico 9 e no Gráfico 10. 

 

Gráfico 9: Variação no eixo y da extremidade da mola (Caso 5) 

 

Gráfico 10: Variação no eixo x da extremidade da mola (Caso 5) 

Os gráficos revelam o mesmo comportamento do caso 4, as divergências dos 

modelos são muito grandes. No entanto os desvios relativos entre os modelos 

diminuem em relação ao caso 4, na simulação de 10 espiras os deslocamentos são 

40% maiores no eixo y e 90% no eixo x. 
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6 CONCLUSÃO 

A principal dificuldade enfrentada no desenrolar do projeto foi o manuseio do 

software Patran. O software foi criado pela NASA (National Aeronautics and Space 

Administration) nos anos 60, o que comprova a sua potência, entretanto a interface 

com o usuário é confusa acarretando um longo período de aprendizado. Algumas 

vezes foram notados também alguns “bugs” no software. 

A modelagem do duto pipe-in-pipe não se mostrou, após um período de aprendizado 

no Patran, muito complexa. A aplicação das condições de contorno, que foi a parte 

mais trabalhosa e que demandou mais tempo, é intuitiva e facilmente corrigida. No 

entanto, os resultados obtidos para a tensão radial no modelo axissimétrico sujeito a 

pressões interna e externa mostram que, apesar de as condições de contorno de 

deslocamentos serem satisfeitas, os carregamentos não coincidem perfeitamente com 

as condições de contorno impostas. 

Os resultados das simulações para o duto pipe-in-pipe, com exceção da tensão radial 

na tração que já foi comentada, foram bastante satisfatórios. Pode-se afirmar que o 

modelo analítico validou o modelo de elementos finitos, já que mesmo não sendo 

utilizada uma malha muito refinada os valores são quase idênticos. 

Neste trabalho o atrito no pipe-in-pipe, apesar de considerado nas simulações, não foi 

estudado a fundo. Uma análise mais cuidadosa poderia estudar a resposta do sistema 

com diferentes coeficientes de atrito. A flexão, que era o único carregamento atuante 

no caso 3, poderia também ser estudada em combinação com outros esforços, como 

pressões internas e externas, o que simularia, com uma precisão maior, as condições 

sobre as quais os dutos pipe-in-pipe estão sujeitos. 

Em relação a dutos flexíveis pode-se afirmar que a modelagem é bem mais 

trabalhosa. Modelar corretamente os tendões helicoidais das armaduras do riser é 

uma tarefa bastante desafiadora e complexa, no entanto o modelo apresentado neste 

trabalho aparenta estar correto. Infelizmente não foi possível verificar a 

funcionalidade do modelo apresentado, já que o mesmo, por apresentar geometria 

complexa e inúmeras superfícies de contato, não converge quando simulado em 

computadores domésticos. 

Devido à essa limitação a proposta do projeto foi alterada, com intuito de simplificar 

o modelo analisado, e apenas um tendão da armadura helicoidal do riser foi 
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simulado, o que configura uma mola helicoidal. A simulação do tendão isolado dos 

demais não foi tão bem-sucedida quanto a simulação do duto pipe-in-pipe. Os 

resultados do modelo analítico divergiram dos resultados do modelo de elementos 

finitos. Um possível causa é a hipótese de curvatura constante adotada no modelo 

analítico e que não é válida no modelo de elementos finitos. Outra possível razão 

seriam erros na modelagem do tendão. 

Mesmo sem haver a possibilidade de se simular o modelo do duto flexível como um 

todo, o que seria ideal, ainda há espaço para novos estudos. O contato poderia ser 

simplificado analisando-se apenas alguns pares por vez, como, por exemplo, o atrito 

entre um tendão com seus vizinhos da mesma armadura e alguns tendões da 

armadura adjacente. A armadura helicoidal também poderia ser analisada 

individualmente sob algum carregamento. Dessa forma a interação entre os tendões 

de uma mesma armadura ficaria mais evidente e uma resposta global do sistema seria 

mais tangível. 

Neste trabalho adotou-se um cilindro de aço para simplificar a modelagem da 

carcaça intertravada. Entretanto, essa simplificação torna-se um fator limitante do 

modelo, pois ignora o atrito que ocorre na própria carcaça. Uma modelagem da 

carcaça mais fiel à realidade iria contribuir bastante para a validade do modelo. 
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8 ANEXOS 

8.1 Anexo A: Modelo analítico de tração de um duto sanduíche implementado 

no Matlab 

As equações abaixo (1 a 6), presentes também no capítulo 5.1.1.1, são utilizadas para 

montar um sistema de equações lineares para as incógnitas pc12, pc23, T, T1, T2 e T3, 

sendo os outros parâmetros das equações definidos pelas propriedades dos materiais, 

pela geometria do problema e pelo carregamento imposto. 

 Compatibilidade de deslocamentos entre camadas 

1. ur1 r01 = ur2(ri2) r01 = ri2 

2. ur2 r02 = ur3(ri3) r02 = ri3 

 Compatibilidade de pressões entre camadas 

𝑝𝑖1 = 𝑝𝑖  

𝑝01 = 𝑝𝑖2 = 𝑝𝑐12 

𝑝02 = 𝑝𝑖3 = 𝑝𝑐23 

𝑝03 = 𝑝0 

 Equilíbrio de forças na direção axial 

3. σz1 = E1εz +
2υ1 p i1ri1

2 −p01 r01
2  

 r01
2 −ri1

2  
=

T1

π r01
2 −ri1

2  
 

4. σz2 = E2εz +
2υ2 p i2ri2

2 −p02 r02
2  

 r02
2 −ri2

2  
=

T2

π r02
2 −ri2

2  
 

5. σz3 = E3εz +
2υ3 p i3ri3

2 −p03 r03
2  

 r03
2 −ri3

2  
=

T3

π r03
2 −ri3

2  
 

6. T = T1 + T2 + T3 

Após o desenvolvimentos dessas equações tem-se: 

 
 
 
 
 
 
 
 
 
 
 

2𝜐1𝑟01
2

𝑟01
2 −𝑟𝑖1

2 0 0 −
1

𝜋 𝑟01
2 −𝑟𝑖1

2  
0 0

2𝜐2𝑟𝑖2
2

𝑟02
2 −𝑟𝑖2

2 −
2𝜐2𝑟02

2

𝑟02
2 −𝑟𝑖2

2 0 0 −
1

𝜋 𝑟02
2 −𝑟𝑖2

2  
0

0
2𝜐3𝑟𝑖3

2

𝑟03
2 −𝑟𝑖3

2 0 0 0 −
1

𝜋 𝑟03
2 −𝑟𝑖3

2  

0 0 −1 1 1 1

−
𝜐1𝑟01

3

𝜆1 𝑟01
2 −𝑟𝑖1

2  
−

𝑟𝑖1
2 𝑟01

2𝐺1 𝑟01
2 −𝑟𝑖1

2  
−

𝜐2𝑟𝑖2
3

𝜆2 𝑟02
2 −𝑟𝑖2

2  
−

𝑟𝑖2𝑟02
2

2𝐺2 𝑟02
2 −𝑟𝑖2

2  

𝜐2𝑟𝑖2
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3
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Resolvendo o sistema (A.X=B) podemos calcular o campo de deslocamentos e de 

tensões para cada camada e compará-los com os valores provenientes do Método dos 

Elementos Finitos. 

a=48; 

b=50; 

c=58; 

d=60; 

l=500; 

delta_l=1; 

def=delta_l/l; 

p_0=10; 

p_i=1; 

E(1)=200000; 

poisson(1)=0.3; 

lambda(1)=(poisson(1)*E(1))/((1+poisson(1))*(1-2*poisson(1))); 

G(1)=E(1)/(2*(1+poisson(1))); 

E(2)=1300; 

poisson(2)=0.34; 

lambda(2)=(poisson(2)*E(2))/((1+poisson(2))*(1-2*poisson(2))); 

G(2)=E(2)/(2*(1+poisson(2))); 

E(3)=200000; 

poisson(3)=0.3; 

lambda(3)=(poisson(3)*E(3))/((1+poisson(3))*(1-2*poisson(3))); 

G(3)=E(3)/(2*(1+poisson(3))); 

A(1,1)=(-2*poisson(1)*b^2)/(a^2-b^2); 

A(2,1)=(2*poisson(2)*b^2)/(c^2-b^2); 

A(3,1)=0; 

A(4,1)=0; 

A(5,1)=-(poisson(1)*b^3)/(lambda(1)*(b^2-a^2))-(a^2*b)/(2*G(1)*(b^2-a^2))-

(poisson(2)*b^3)/(lambda(2)*(c^2-b^2))-(b*c^2)/(2*G(2)*(c^2-b^2)); 

A(6,1)=(poisson(2)*b^2*c)/(lambda(2)*(c^2-b^2))+(b^2*c)/(2*G(2)*(c^2-b^2)); 

A(1,2)=0; 
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A(2,2)=(-2*poisson(2)*c^2)/(c^2-b^2); 

A(3,2)=(2*poisson(3)*c^2)/(d^2-c^2); 

A(4,2)=0; 

A(5,2)=(poisson(2)*b*c^2)/(lambda(2)*(c^2-b^2))+(b*c^2)/(2*G(2)*(c^2-b^2)); 

A(6,2)=-(poisson(2)*c^3)/(lambda(2)*(c^2-b^2))-(b^2*c)/(2*G(2)*(c^2-b^2))-

(poisson(3)*c^3)/(lambda(3)*(d^2-c^2))-(c*d^2)/(2*G(3)*(d^2-c^2)); 

A(1,3)=0; 

A(2,3)=0; 

A(3,3)=0; 

A(4,3)=-1; 

A(5,3)=0; 

A(6,3)=0; 

A(1,4)=-1/(pi.*(b^2-a^2)); 

A(2,4)=0; 

A(3,4)=0; 

A(4,4)=1; 

A(5,4)=0; 

A(6,4)=0; 

A(1,5)=0; 

A(2,5)=-1/(pi.*(c^2-b^2)); 

A(3,5)=0; 

A(4,5)=1; 

A(5,5)=0; 

A(6,5)=0; 

A(1,6)=0; 

A(2,6)=0; 

A(3,6)=-1/(pi.*(d^2-c^2)); 

A(4,6)=1; 

A(5,6)=0; 

A(6,6)=0; 

B(1,1)=(-2*poisson(1)*p_i*a^2)/(a^2-b^2)-E(1)*def; 

B(2,1)=-E(2)*def; 
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B(3,1)=(2*poisson(3)*d^2*p_0)/(d^2-c^2)-E(3)*def; 

B(4,1)=0; 

B(5,1)=((-poisson(1)*a^2*b)/(lambda(1)*(b^2-a^2))-(a^2*b)/(2*G(1)*(b^2-

a^2)))*p_i-(poisson(2)-poisson(1))*b*def; 

B(6,1)=((-poisson(3)*c*d^2)/(lambda(3)*(d^2-c^2))-(c*d^2)/(2*G(3)*(d^2-

c^2)))*p_0-(poisson(3)-poisson(2))*c*def; 

X=inv(A)*B; 

pc_12=X(1); 

pc_23=X(2); 

F=X(3); 

F_1=X(4); 

F_2=X(5); 

F_3=X(6); 

r_1=b; 

r_2=c; 

r_3=d; 

sigma_r_1=(p_i*a^2-pc_12*b^2)/(b^2-a^2)-((p_i-pc_12)*a^2*b^2)/((b^2-

a^2)*r_1^2) 

sigma_teta_1=(p_i*a^2-pc_12*b^2)/(b^2-a^2)+((p_i-pc_12)*a^2*b^2)/((b^2-

a^2)*r_1^2) 

sigma_z_1=(2*poisson(1)*(p_i*a^2-pc_12*b^2))/(b^2-a^2)+E(1)*def 

u_r_1=(p_i*a^2-pc_12*b^2)/(b^2-a^2)*r_1+(((p_i-pc_12)*a^2*b^2)/(2*G(1)*(b^2-

a^2)))/r_1 

sigma_r_2=(pc_12*b^2-pc_23*c^2)/(c^2-b^2)-((pc_12-pc_23)*b^2*c^2)/((c^2-

b^2)*r_2^2) 

sigma_teta_2=(pc_12*b^2-pc_23*c^2)/(c^2-b^2)+((pc_12-pc_23)*b^2*c^2)/((c^2-

b^2)*r_2^2) 

sigma_z_2=(2*poisson(2)*(pc_12*b^2-pc_23*c^2))/(c^2-b^2)+E(2)*def 

u_r_2=(pc_12*b^2-pc_23*c^2)/(c^2-b^2)*r_2+(((pc_12-pc_23)*b^2*c^2)/((c^2-

b^2)*2*G(2)))/r_2 

sigma_r_3=(pc_23*c^2-p_0*d^2)/(d^2-c^2)-((pc_23-p_0)*c^2*d^2)/((d^2-

c^2)*r_3^2) 
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sigma_teta_3=(pc_23*c^2-p_0*d^2)/(d^2-c^2)+((pc_23-p_0)*c^2*d^2)/((d^2-

c^2)*r_3^2) 

sigma_z_3=(2*poisson(3)*(pc_23*c^2-p_0*d^2))/(d^2-c^2)+E(3)*def 

u_r_3=(pc_23*c^2-p_0*d^2)/(d^2-c^2)*r_3+(((pc_23-p_0)*c^2*d^2)/((d^2-

c^2)*2*G(3)))/r_3 

8.2 Anexo B: Modelo analítico de flexão de um duto sanduíche  implementado 

no Matlab 

M_0=500000; 

E(1)=200000; 

E(2)=1300; 

E(3)=200000; 

D_0(1)=100; 

D_0(2)=116; 

D_0(3)=120; 

D_i(1)=96; 

D_i(2)=100; 

D_i(3)=116; 

r_1=D_0(1)/2; 

r_2=D_0(2)/2; 

r_3=D_0(3)/2; 

I(1)=(pi./64)*(D_0(1)^4-D_i(1)^4); 

I(2)=(pi./64)*(D_0(2)^4-D_i(2)^4); 

I(3)=(pi./64)*(D_0(3)^4-D_i(3)^4); 

sigma_1=M_0/(E(1)*I(1)+E(2)*I(2)+E(3)*I(3))*E(1)*r_1 

sigma_2=M_0/(E(1)*I(1)+E(2)*I(2)+E(3)*I(3))*E(2)*r_2 

sigma_3=M_0/(E(1)*I(1)+E(2)*I(2)+E(3)*I(3))*E(3)*r_3 



98 

 

8.3 Anexo C: Simulação para o caso 1 (tração pura de um duto sanduíche) 

 

Figura 77: Tensão axial para tração pura 

 

Figura 78: Tensão radial para tração pura 
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8.4 Anexo D: Simulação para o caso 2 (tração mais pressões sobre um duto 

sanduíche) 

 

Figura 79:Tensão axial para tração mais pressões 

 

Figura 80: Tensão radial para tração mais pressões 
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8.5 Anexo E: Simulação para o caso 3 (flexão pura de um duto sanduíche) 

 

Figura 81: Tensão axial para flexão pura 
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8.6 Anexo F: Simulação para o caso 4 (flexão pura de mola com 5 espiras) 

 

Figura 82: Deslocamento em y de mola com seção transversal circular (M= 1000 N.mm) 

 

Figura 83: Deslocamento em x de mola com seção transversal circular (M= 1000 N.mm) 
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8.7 Anexo G: Simulação para o caso 5 (flexão pura de mola com 10 espiras) 

 

Figura 84: Deslocamento em y de mola com seção transversal circular (M= 1000 N.mm) 

 

Figura 85: Deslocamento em x de mola com seção transversal circular (M= 1000 N.mm) 


